-
Notifications
You must be signed in to change notification settings - Fork 67
/
Copy pathhelpers.cpp
339 lines (303 loc) · 9.96 KB
/
helpers.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
/*
* Copyright (C) 2008-12 Michal Perdoch
* All rights reserved.
*
* This file is part of the HessianAffine detector and is made available under
* the terms of the BSD license (see the COPYING file).
*
*/
#include <cmath>
#include <iostream>
#include <cv.h>
using namespace cv;
using namespace std;
#include <sys/times.h>
#include <time.h>
#include <sys/time.h>
#include <unistd.h>
#include <stdio.h>
double getTime()
{
#ifdef _POSIX_CPUTIME
struct timespec ts;
if (!clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts))
{
return (double)(ts.tv_sec) + (double)(ts.tv_nsec)/1.0e9;
} else
#endif
{
// fall back to standard unix time
struct timeval tv;
gettimeofday(&tv, 0);
return (double)(tv.tv_sec) + (double)(tv.tv_usec)/1.0e6;
}
}
template <typename ValueType>
void swap(ValueType *a, ValueType *b)
{
ValueType tmp = *a; *a = *b; *b = tmp;
}
void solveLinear3x3(float *A, float *b)
{
// find pivot of first column
int i = 0;
float *pr = A;
float vp = abs(A[0]);
float tmp = abs(A[3]);
if (tmp > vp)
{
// pivot is in 1st row
pr = A+3;
i = 1;
vp = tmp;
}
if (abs(A[6]) > vp)
{
// pivot is in 2nd row
pr = A+6;
i = 2;
}
// swap pivot row with first row
if (pr != A) { swap(pr, A); swap(pr+1, A+1); swap(pr+2, A+2); swap(b+i, b); }
// fixup elements 3,4,5,b[1]
vp = A[3] / A[0]; A[4] -= vp*A[1]; A[5] -= vp*A[2]; b[1] -= vp*b[0];
// fixup elements 6,7,8,b[2]]
vp = A[6] / A[0]; A[7] -= vp*A[1]; A[8] -= vp*A[2]; b[2] -= vp*b[0];
// find pivot in second column
if (abs(A[4]) < abs(A[7])) { swap(A+7, A+4); swap(A+8, A+5); swap(b+2, b+1); }
// fixup elements 7,8,b[2]
vp = A[7] / A[4];
A[8] -= vp*A[5];
b[2] -= vp*b[1];
// solve b by back-substitution
b[2] = (b[2] )/A[8];
b[1] = (b[1]-A[5]*b[2] )/A[4];
b[0] = (b[0]-A[2]*b[2]-A[1]*b[1])/A[0];
}
void rectifyAffineTransformationUpIsUp(float &a11, float &a12, float &a21, float &a22)
{
double a = a11, b = a12, c = a21, d = a22;
double det = sqrt(abs(a*d-b*c));
double b2a2 = sqrt(b*b + a*a);
a11 = b2a2/det; a12 = 0;
a21 = (d*b+c*a)/(b2a2*det); a22 = det/b2a2;
}
void rectifyAffineTransformationUpIsUp(float *U)
{
rectifyAffineTransformationUpIsUp(U[0], U[1], U[2], U[3]);
}
void computeGaussMask(Mat &mask)
{
int size = mask.cols;
int halfSize = size >> 1;
// fit 3*sigma into half_size
float scale = float(halfSize)/3.0f;
float scale2 = -2.0f * scale * scale;
float *tmp = new float[halfSize+1];
for (int i = 0; i<= halfSize; i++)
tmp[i] = exp((float(i*i)/scale2));
int endSize = int(ceil(scale*5.0f)-halfSize);
for (int i = 1; i< endSize; i++)
tmp[halfSize-i] += exp((float((i+halfSize)*(i+halfSize))/scale2));
for (int i=0; i<=halfSize; i++)
for (int j=0; j<=halfSize; j++)
{
mask.at<float> ( i+halfSize,-j+halfSize) =
mask.at<float>(-i+halfSize, j+halfSize) =
mask.at<float>( i+halfSize, j+halfSize) =
mask.at<float>(-i+halfSize,-j+halfSize) = tmp[i]*tmp[j];
}
delete [] tmp;
}
void computeCircularGaussMask(Mat &mask)
{
int size = mask.cols;
int halfSize = size >> 1;
float r2 = float(halfSize * halfSize);
float sigma2 = 0.9f*r2;
// float sigma = float(halfSize)/3.0f;
// float sigma2 = 2*sigma*sigma;
float disq;
float *mp = mask.ptr<float>(0);
for(int i=0;i<mask.rows;i++)
for(int j=0;j<mask.cols;j++)
{
disq = float((i-halfSize)*(i-halfSize)+(j-halfSize)*(j-halfSize));
*mp++ = (disq < r2) ? exp(- disq / sigma2) : 0;
}
}
void invSqrt(float &a, float &b, float &c, float &l1, float &l2)
{
double t, r;
if (b != 0)
{
r = double(c-a)/(2*b);
if (r>=0) t = 1.0/(r+::sqrt(1+r*r)); else t = -1.0/(-r+::sqrt(1+r*r));
r = 1.0/::sqrt(1+t*t); /* c */
t = t*r; /* s */
} else {
r = 1;
t = 0;
}
double x,z,d;
x = 1.0/sqrt(r*r*a-2*r*t*b+t*t*c);
z = 1.0/sqrt(t*t*a+2*r*t*b+r*r*c);
d = sqrt(x*z);
x /= d; z /= d;
// let l1 be the greater eigenvalue
if (x < z) { l1 = float(z); l2 = float(x); } else { l1 = float(x); l2 = float(z); }
// output square root
a = float( r*r*x+t*t*z);
b = float(-r*t*x+t*r*z);
c = float( t*t*x+r*r*z);
}
bool getEigenvalues(float a, float b, float c, float d, float &l1, float &l2)
{
float trace = a+d;
float delta1 = (trace*trace-4*(a*d-b*c));
if (delta1 < 0)
return false;
float delta = sqrt(delta1);
l1 = (trace+delta)/2.0f;
l2 = (trace-delta)/2.0f;
return true;
}
// check if we are not too close to boundary of the image/
bool interpolateCheckBorders(const Mat &im, float ofsx, float ofsy, float a11, float a12, float a21, float a22, const Mat &res)
{
const int width = im.cols-2;
const int height = im.rows-2;
const int halfWidth = res.cols >> 1;
const int halfHeight = res.rows >> 1;
float x[4]; x[0] = -halfWidth; x[1] = -halfWidth; x[2] = +halfWidth; x[3] = +halfWidth;
float y[4]; y[0] = -halfHeight; y[1] = +halfHeight; y[2] = -halfHeight; y[3] = +halfHeight;
for (int i=0; i<4; i++)
{
float imx = ofsx + x[i]*a11 + y[i]*a12;
float imy = ofsy + x[i]*a21 + y[i]*a22;
if (floor(imx) <= 0 || floor(imy) <= 0 || ceil(imx) >= width || ceil(imy) >= height)
return true;
}
return false;
}
bool interpolate(const Mat &im, float ofsx, float ofsy, float a11, float a12, float a21, float a22, Mat &res)
{
bool ret = false;
// input size (-1 for the safe bilinear interpolation)
const int width = im.cols-1;
const int height = im.rows-1;
// output size
const int halfWidth = res.cols >> 1;
const int halfHeight = res.rows >> 1;
float *out = res.ptr<float>(0);
for (int j=-halfHeight; j<=halfHeight; ++j)
{
const float rx = ofsx + j * a12;
const float ry = ofsy + j * a22;
for(int i=-halfWidth; i<=halfWidth; ++i)
{
float wx = rx + i * a11;
float wy = ry + i * a21;
const int x = (int) floor(wx);
const int y = (int) floor(wy);
if (x >= 0 && y >= 0 && x < width && y < height)
{
// compute weights
wx -= x; wy -= y;
// bilinear interpolation
*out++ =
(1.0f - wy) * ((1.0f - wx) * im.at<float>(y,x) + wx * im.at<float>(y,x+1)) +
( wy) * ((1.0f - wx) * im.at<float>(y+1,x) + wx * im.at<float>(y+1,x+1));
} else {
*out++ = 0;
ret = true; // touching boundary of the input
}
}
}
return ret;
}
void photometricallyNormalize(Mat &image, const Mat &binaryMask, float &sum, float &var)
{
const int width = image.cols;
const int height = image.rows;
sum=0;
float gsum=0;
for (int j=0; j < height; j++)
for (int i=0; i < width; i++)
if (binaryMask.at<float>(j,i)>0)
{
sum += image.at<float>(j,i);
gsum ++;
}
sum = sum / gsum;
var=0;
for (int j=0; j < height; j++)
for (int i=0; i < width; i++)
if (binaryMask.at<float>(j,i)>0)
var += (sum - image.at<float>(j,i))*(sum - image.at<float>(j,i));
var = ::sqrt(var / gsum);
if (var < 0.0001)
// if variance is too low, don't do anything
return;
float fac = 50.0f/var;
for (int j=0; j < height; j++)
for (int i=0; i < width; i++)
{
image.at<float>(j,i) = 128 + fac * (image.at<float>(j,i) - sum);
if (image.at<float>(j,i) > 255) image.at<float>(j,i)=255;
if (image.at<float>(j,i) < 0) image.at<float>(j,i)=0;
}
}
Mat gaussianBlur(const Mat input, float sigma)
{
Mat ret(input.rows, input.cols, input.type());
int size = (int)(2.0 * 3.0 * sigma + 1.0); if (size % 2 == 0) size++;
GaussianBlur(input, ret, Size(size, size), sigma, sigma, BORDER_REPLICATE);
return ret;
}
void gaussianBlurInplace(Mat &inplace, float sigma)
{
int size = (int)(2.0 * 3.0 * sigma + 1.0); if (size % 2 == 0) size++;
GaussianBlur(inplace, inplace, Size(size, size), sigma, sigma, BORDER_REPLICATE);
}
Mat doubleImage(const Mat &input)
{
Mat n(input.rows*2, input.cols*2, input.type());
const float *in = input.ptr<float>(0);
for (int r = 0; r < input.rows-1; r++)
for (int c = 0; c < input.cols-1; c++)
{
const int r2 = r << 1;
const int c2 = c << 1;
n.at<float>(r2,c2) = in[0];
n.at<float>(r2+1,c2) = 0.5f *(in[0]+in[input.step]);
n.at<float>(r2,c2+1) = 0.5f *(in[0]+in[1]);
n.at<float>(r2+1,c2+1) = 0.25f*(in[0]+in[1]+in[input.step]+in[input.step+1]);
++in;
}
for (int r = 0; r < input.rows-1; r++)
{
const int r2 = r << 1;
const int c2 = (input.cols-1) << 1;
n.at<float>(r2,c2) = input.at<float>(r,input.cols-1);
n.at<float>(r2+1,c2) = 0.5f*(input.at<float>(r,input.cols-1) + input.at<float>(r+1,input.cols-1));
}
for (int c = 0; c < input.cols - 1; c++)
{
const int r2 = (input.rows-1) << 1;
const int c2 = c << 1;
n.at<float>(r2,c2) = input.at<float>(input.rows-1,c);
n.at<float>(r2,c2+1) = 0.5f*(input.at<float>(input.rows-1,c) + input.at<float>(input.rows-1,c+1));
}
n.at<float>(n.rows-1, n.cols-1) = n.at<float>(input.rows-1, input.cols-1);
return n;
}
Mat halfImage(const Mat &input)
{
Mat n(input.rows/2, input.cols/2, input.type());
float *out = n.ptr<float>(0);
for (int r = 0, ri = 0; r < n.rows; r++, ri += 2)
for (int c = 0, ci = 0; c < n.cols; c++, ci += 2)
*out++ = input.at<float>(ri,ci);
return n;
}