-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path16_flawed_frequency_transmission.rb
103 lines (91 loc) · 3.32 KB
/
16_flawed_frequency_transmission.rb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
def fft(digits)
sum = 0
sum_left = digits.map { |d| sum += d }
sum_left.unshift(0)
digits.each_index { |i|
n = i + 1
sign = 1
base = i
total = 0
while base < digits.size
total += ((sum_left[base + n] || sum_left[-1]) - sum_left[base]) * sign
base += n * 2
sign *= -1
end
digits[i] = total.abs % 10
}
end
input = ARGF.read.chomp.chars.map(&method(:Integer)).freeze
digits = input.dup
100.times { fft(digits) }
puts digits.take(8).join
offset = Integer(input.take(7).join, 10)
raise "Can't do it the fast way" unless offset * 2 >= input.size * 10000
# As long as we are in the latter half of the list,
# each value is just the sum of all values coming after it.
# Just going right-to-left with a running sum is sufficient to solve this relatively quickly.
# But let's do slightly better.
# Observe the contribution of a lone 1.
# It's binomial coefficients.
# Going left adds 1 to n and k, going down (one iteration) adds 1 to n.
# The coefficients for the 100th iteration can be calculated and reused.
# They would otherwise be very large, but all operations are modulo 10.
# So a few theorems can help make it easier.
#
# We want we're going to want binom(99 + i, i) % 10.
# Because binom(n, k) == binom(n, n - k), that's equal to:
# binom(99 + i, 99) % 10.
# By Chinese Remainder Theorem...
#
# x congruent to a_i mod n_i
# x = sum a_i y_i z_i
# y_i is the product of all other moduli
# z_i is the modular inverse of y_i mod n_i
#
# Modular inverse of 5 mod 2 is 1
# Modular inverse of 2 mod 5 is 3
#
# 1 * 5 = 5
# 2 * 3 = 6
#
# So that tells us we want:
# (binom(99 + i, 99) % 2) * 5 + (binom(99 + i, 99) % 5) * 6
big_size = input.size * 10000 - offset
rsize = 8
result = [0] * rsize
stride = ->(big_stride, little_strides) {
((0...big_size) % big_stride).each { |big_stride_base|
little_strides.each { |little_stride, coeff|
i = big_stride_base + little_stride
dist_from_end = big_size - i
[dist_from_end, rsize].min.times { |j|
result[j] += input[(offset + i + j) % input.size] * coeff
}
}
}
}
# By Lucas's Theorem, binom(n, k) % m depends on the base-m expansion of n and k.
# It's the product of the binomials for each pair of digits of n and k paired
# So for each position, that digit of n must be >= that digit of k.
#
# For base 2:
# n & k == k ? 1 : 0
# So (binom(99 + i, 99) % 2) * 5 is rewritten as:
# ((99 + i) & 99 == 99 ? 1 : 0) * 5.
# Since 99 in base 2 is 1100011, we know that the lower seven bits of (99 + i) must be 0b11xxx11.
# So subtract 99 and the lower 7 bits of i must be 0b00xxx00.
# Notice the values increase by 4 each time and three bits means 8 values.
# Seven bits is 128.
# Thus:
# ((0...32) % 4).include?(i % 128) ? 5 : 0
stride[128, ((0...32) % 4).to_h { |x| [x, 5] }]
# For base 5:
# The base-5 expansion of 99 is 344_5.
# The only possibilities for last three base-5 digits of base-5 expansion for n must be 344_5 or 444_5.
# For 344_5, result is binom(3, 3) * binom(4, 4) * binom(4, 4) = 1 * 1 * 1 = 1.
# For 444_5, result is binom(4, 3) * binom(4, 4) * binom(4, 4) = 4 * 1 * 1 = 4.
# Multiply by 6 to get 6 and 24, mod by 10 to get 6 and 4.
# These cases happen when (99 + i) % 125 == 99 and (99 + i) % 125 == 124.
# Subtract 99 from both sides to get i % 125 == 0 and i % 125 == 25.
stride[125, {0 => 6, 25 => 4}]
puts result.map { |x| x % 10 }.join