forked from subokita/Sandbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathotsu.py
127 lines (95 loc) · 3.75 KB
/
otsu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
#!/usr/local/Cellar/python/2.7.6/bin/python
# -*- coding: utf-8 -*-
import sys
from numpy import *
import scipy.misc
from matplotlib import pyplot
def otsu2( hist, total ):
"""
This is the more common (optimized) implementation of otsu algorithm, the one you see on Wikipedia pages
"""
no_of_bins = len( hist ) # should be 256
sum_total = 0
for x in range( 0, no_of_bins ):
sum_total += x * hist[x]
weight_background = 0.0
sum_background = 0.0
inter_class_variances = []
for threshold in range( 0, no_of_bins ):
# background weight will be incremented, while foreground's will be reduced
weight_background += hist[threshold]
if weight_background == 0 :
continue
weight_foreground = total - weight_background
if weight_foreground == 0 :
break
sum_background += threshold * hist[threshold]
mean_background = sum_background / weight_background
mean_foreground = (sum_total - sum_background) / weight_foreground
inter_class_variances.append( weight_background * weight_foreground * (mean_background - mean_foreground)**2 )
# find the threshold with maximum variances between classes
return argmax(inter_class_variances)
def otsu1( hist, total ):
"""
This is the original otsu thresholding algorithm. No optimization is applied, in order
to illustrate what the algorithm is trying to do
'hist' is the histogram of the image or data
'total' is the total number of pixels of the image, or the size of data
"""
no_of_bins = len( hist ) # should be 256
intra_class_variances = []
for threshold in range( 0, no_of_bins ):
# first we try to find the weight and variance on the background
sum_background = float(sum( hist[0:threshold] ))
weight_background = sum_background / total
mean_background = 0.0
variance_background = 0.0
if sum_background > 0.0: # avoid division by zero
for x in range( 0, threshold ):
mean_background += x * hist[x]
mean_background /= sum_background
for x in range( 0, threshold ):
variance_background += (x - mean_background) ** 2 * hist[x]
variance_background /= sum_background
# then we do it for the foreground
sum_foreground = float(sum( hist[threshold:no_of_bins] ))
weight_foreground = sum_foreground / total
mean_foreground = 0.0
variance_foreground = 0.0
if sum_foreground > 0.0:
for x in range( threshold, no_of_bins ):
mean_foreground += x * hist[x]
mean_foreground /= sum_foreground
for x in range( threshold, no_of_bins ):
variance_foreground += (x - mean_foreground) ** 2 * hist[x]
variance_foreground /= sum_foreground
# find the variances within these two classes
intra_class_variances.append( weight_background * variance_background + weight_foreground * variance_foreground )
# use the threshold that has the minimum intra class variance
return argmin( intra_class_variances ) - 1
def main():
img = scipy.misc.imread( '/Users/saburookita/Desktop/Bright_green_tree_-_Waikato.jpg' )
# resize to a more managable size
img = scipy.misc.imresize( img, (1944 / 4, 2592 / 4) )
# convert to grayscale
grayscale = img.dot( [0.299, 0.587, 0.144] )
rows, cols = shape( grayscale )
# create 256 bins histogram
hist = histogram( grayscale, 256 )[0]
# apply the otsu thresholding
thresh = otsu2( hist, rows * cols )
figure = pyplot.figure( figsize=(14, 6) )
figure.canvas.set_window_title( 'Otsu thresholding' )
axes = figure.add_subplot(121)
axes.set_title('Original')
axes.get_xaxis().set_visible( False )
axes.get_yaxis().set_visible( False )
axes.imshow( img, cmap='Greys_r' )
axes = figure.add_subplot(122)
axes.set_title('Otsu thresholding')
axes.get_xaxis().set_visible( False )
axes.get_yaxis().set_visible( False )
axes.imshow( grayscale >= thresh, cmap='Greys_r' )
pyplot.show()
if __name__ == '__main__':
main()