forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathembedding_layer.py
109 lines (89 loc) · 4.15 KB
/
embedding_layer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Implementation of embedding layer with shared weights."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf # pylint: disable=g-bad-import-order
from official.transformer.model import model_utils
from official.utils.accelerator import tpu as tpu_utils
class EmbeddingSharedWeights(tf.layers.Layer):
"""Calculates input embeddings and pre-softmax linear with shared weights."""
def __init__(self, vocab_size, hidden_size, method="gather"):
"""Specify characteristic parameters of embedding layer.
Args:
vocab_size: Number of tokens in the embedding. (Typically ~32,000)
hidden_size: Dimensionality of the embedding. (Typically 512 or 1024)
method: Strategy for performing embedding lookup. "gather" uses tf.gather
which performs well on CPUs and GPUs, but very poorly on TPUs. "matmul"
one-hot encodes the indicies and formulates the embedding as a sparse
matrix multiplication. The matmul formulation is wasteful as it does
extra work, however matrix multiplication is very fast on TPUs which
makes "matmul" considerably faster than "gather" on TPUs.
"""
super(EmbeddingSharedWeights, self).__init__()
self.vocab_size = vocab_size
self.hidden_size = hidden_size
if method not in ("gather", "matmul"):
raise ValueError("method {} must be 'gather' or 'matmul'".format(method))
self.method = method
def build(self, _):
with tf.variable_scope("embedding_and_softmax", reuse=tf.AUTO_REUSE):
# Create and initialize weights. The random normal initializer was chosen
# randomly, and works well.
self.shared_weights = tf.get_variable(
"weights", [self.vocab_size, self.hidden_size],
initializer=tf.random_normal_initializer(
0., self.hidden_size ** -0.5))
self.built = True
def call(self, x):
"""Get token embeddings of x.
Args:
x: An int64 tensor with shape [batch_size, length]
Returns:
embeddings: float32 tensor with shape [batch_size, length, embedding_size]
padding: float32 tensor with shape [batch_size, length] indicating the
locations of the padding tokens in x.
"""
with tf.name_scope("embedding"):
# Create binary mask of size [batch_size, length]
mask = tf.to_float(tf.not_equal(x, 0))
if self.method == "gather":
embeddings = tf.gather(self.shared_weights, x)
embeddings *= tf.expand_dims(mask, -1)
else: # matmul
embeddings = tpu_utils.embedding_matmul(
embedding_table=self.shared_weights,
values=tf.cast(x, dtype=tf.int32),
mask=mask
)
# embedding_matmul already zeros out masked positions, so
# `embeddings *= tf.expand_dims(mask, -1)` is unnecessary.
# Scale embedding by the sqrt of the hidden size
embeddings *= self.hidden_size ** 0.5
return embeddings
def linear(self, x):
"""Computes logits by running x through a linear layer.
Args:
x: A float32 tensor with shape [batch_size, length, hidden_size]
Returns:
float32 tensor with shape [batch_size, length, vocab_size].
"""
with tf.name_scope("presoftmax_linear"):
batch_size = tf.shape(x)[0]
length = tf.shape(x)[1]
x = tf.reshape(x, [-1, self.hidden_size])
logits = tf.matmul(x, self.shared_weights, transpose_b=True)
return tf.reshape(logits, [batch_size, length, self.vocab_size])