forked from WCRP-CORDEX/simulation-status
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCORDEX_CMIP6_status_by_scenario.py
59 lines (54 loc) · 2.4 KB
/
CORDEX_CMIP6_status_by_scenario.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
#!/usr/bin/env python3
import pandas as pd
from funs import html_header, html_footer, html_legend, table_props
df = pd.read_csv('CMIP6_downscaling_plans.csv')
# Drop unnecessary columns
df.drop(
['contact', 'estimated_completion_date', 'comments'],
axis = 'columns', inplace = True
)
df.drop_duplicates(inplace = True)
collapse_institutions = True
domains = sorted(list(set(df.domain)))
f = open(f'docs/CORDEX_CMIP6_status_by_scenario.html','w')
f.write(html_header('CORDEX-CMIP6 downscaling plans summary tables (split by SSP)'))
f.write('<p style="text-align:left"> Domains: | ')
[f.write(f'<a href="#{dom}">{dom}</a> | ') for dom in domains]
d1 = dict(selector=".level0", props=table_props)
for domain in domains:
f.write(f'''<h2 id="{domain}">{domain}</h2>''')
for exp in ['ssp119', 'ssp126', 'ssp245', 'ssp370', 'ssp585']:
dom_df = df[(df.domain == domain) & (df.experiment == exp)]
dom_df = dom_df.assign(htmlstatus=pd.Series('<span class="' + dom_df.status + '">' + dom_df.experiment + '</span>', index=dom_df.index))
dom_df = dom_df.assign(instmodel=pd.Series(dom_df.institute + '-' + dom_df.rcm_name, index=dom_df.index))
column_id = 'rcm_name' if collapse_institutions else 'instmodel'
dom_plans_matrix = dom_df.pivot_table(
index = ('driving_model', 'ensemble'),
columns = column_id,
values = 'htmlstatus',
aggfunc = lambda x: ' '.join(x.dropna())
)
if collapse_institutions:
inst = dom_df.drop_duplicates(subset=['institute','rcm_name']).pivot_table(
index = ('driving_model', 'ensemble'),
columns = 'rcm_name',
values = 'institute',
aggfunc = lambda x: ', '.join(x.dropna())
).agg(lambda x: ', '.join(x.dropna()))
inst.name = ('','Institutes')
dom_plans_matrix = pd.concat([dom_plans_matrix, inst.to_frame().T])
dom_plans_matrix = dom_plans_matrix.T.set_index([('','Institutes'),dom_plans_matrix.columns]).T
dom_plans_matrix.columns.names = ['Institution(s)','RCM']
f.write(f'<h3>{exp}</h3>\n{html_legend}')
f.write(dom_plans_matrix.style
.set_properties(**{'font-size':'8pt', 'border':'1px lightgrey solid !important'})
.set_table_styles([d1,{
'selector': 'th',
'props': [('font-size', '8pt'),('border-style','solid'),('border-width','1px')]
}])
.render()
.replace('nan','')
.replace('historical','hist')
)
f.write(html_footer())
f.close()