-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathExe1.agda
447 lines (335 loc) · 13 KB
/
Exe1.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
module Exe1 where
open import Basics public
-- \section{Zipping Lists of Compatible Shape}
data List (X : Set) : Set where
<> : List X
_,_ : X -> List X -> List X
infixr 4 _,_
zip0 : {S T : Set} -> List S -> List T -> List (S * T)
zip0 <> <> = <>
zip0 (s , ss) (t , ts) = (s , t) , zip0 ss ts
zip0 _ _ = <> -- a dummy value, for cases we should not reach
data Nat : Set where
zero : Nat
suc : Nat -> Nat
{-# BUILTIN NATURAL Nat #-}
{-# BUILTIN ZERO zero #-}
{-# BUILTIN SUC suc #-}
length : {X : Set} -> List X -> Nat
length <> = zero
length (x , xs) = suc (length xs)
data Vec (X : Set) : Nat -> Set where
<> : Vec X zero
_,_ : {n : Nat} -> X -> Vec X n -> Vec X (suc n)
zip1 : forall {n S T} -> Vec S n -> Vec T n -> Vec (S * T) n
zip1 ss ts = {!!}
vec : forall {n X} -> X -> Vec X n
vec {n} x = {!!}
vapp : forall {n S T} -> Vec (S -> T) n -> Vec S n -> Vec T n
vapp fs ss = {!!}
vmap : forall {n S T} -> (S -> T) -> Vec S n -> Vec T n
vmap f ss = {!!}
zip2 : forall {n S T} -> Vec S n -> Vec T n -> Vec (S * T) n
zip2 ss ts = {!!}
--[Finite sets and projection from vectors]
data Fin : Nat -> Set where
zero : {n : Nat} -> Fin (suc n)
suc : {n : Nat} -> Fin n -> Fin (suc n)
proj : forall {n X} -> Vec X n -> Fin n -> X
proj xs i = {!!}
tabulate : forall {n X} -> (Fin n -> X) -> Vec X n
tabulate {n} f = {!!}
-- Functors and Applicatives
record EndoFunctor (F : Set -> Set) : Set1 where
field
map : forall {S T} -> (S -> T) -> F S -> F T
open EndoFunctor {{...}} public
record Applicative (F : Set -> Set) : Set1 where
infixl 2 _<*>_
field
pure : forall {X} -> X -> F X
_<*>_ : forall {S T} -> F (S -> T) -> F S -> F T
applicativeEndoFunctor : EndoFunctor F
applicativeEndoFunctor = record { map = _<*>_ o pure }
open Applicative {{...}} public
applicativeVec : forall {n} -> Applicative \ X -> Vec X n
applicativeVec = record { pure = vec; _<*>_ = vapp }
endoFunctorVec : forall {n} -> EndoFunctor \ X -> Vec X n
endoFunctorVec = applicativeEndoFunctor
applicativeFun : forall {S} -> Applicative \ X -> S -> X
applicativeFun = record
{ pure = \ x s -> x -- also known as K (drop environment)
; _<*>_ = \ f a s -> f s (a s) -- also known as S (share environment)
}
record Monad (F : Set -> Set) : Set1 where
field
return : forall {X} -> X -> F X
_>>=_ : forall {S T} -> F S -> (S -> F T) -> F T
monadApplicative : Applicative F
monadApplicative = record
{ pure = return
; _<*>_ = \ ff fs -> ff >>= \ f -> fs >>= \ s -> return (f s) }
open Monad {{...}} public
monadVec : {n : Nat} -> Monad \ X -> Vec X n
monadVec = {!!}
applicativeId : Applicative id
applicativeId = {!!}
applicativeComp : forall {F G} -> Applicative F -> Applicative G -> Applicative (F o G)
applicativeComp aF aG = {!!}
record Monoid (X : Set) : Set where
infixr 4 _&_
field
neut : X
_&_ : X -> X -> X
monoidApplicative : Applicative \ _ -> X
monoidApplicative = {!!}
open Monoid {{...}} public -- it's not obvious that we'll avoid ambiguity
--Show by construction that the pointwise product of |Applicative|s is
-- |Applicative|.
record Traversable (F : Set -> Set) : Set1 where
field
traverse : forall {G S T}{{AG : Applicative G}} ->
(S -> G T) -> F S -> G (F T)
traversableEndoFunctor : EndoFunctor F
traversableEndoFunctor = record { map = traverse }
open Traversable {{...}} public
traversableVec : {n : Nat} -> Traversable \ X -> Vec X n
traversableVec = record { traverse = vtr } where
vtr : forall {n G S T}{{_ : Applicative G}} ->
(S -> G T) -> Vec S n -> G (Vec T n)
vtr {{aG}} f <> = pure {{aG}} <>
vtr {{aG}} f (s , ss) = pure {{aG}} _,_ <*> f s <*> vtr f ss
transpose : forall {m n X} -> Vec (Vec X n) m -> Vec (Vec X m) n
transpose = {!!}
crush : forall {F X Y}{{TF : Traversable F}}{{M : Monoid Y}} ->
(X -> Y) -> F X -> Y
crush {{M = M}} =
traverse {T = One}{{AG = monoidApplicative {{M}}}} -- |T| arbitrary
{-Show that |Traversable| is closed under identity and composition.
What other structure does it preserve?-}
--\section{Arithmetic}
_+Nat_ : Nat -> Nat -> Nat
x +Nat y = {!!}
_*Nat_ : Nat -> Nat -> Nat
x *Nat y = {!!}
--\section{Normal Functors}
record Normal : Set1 where
constructor _/_
field
Shape : Set
size : Shape -> Nat
<!_!>N : Set -> Set
<!_!>N X = Sg Shape \ s -> Vec X (size s)
open Normal public
infixr 0 _/_
VecN : Nat -> Normal
VecN n = One / pure n
ListN : Normal
ListN = Nat / id
KN : Set -> Normal
KN A = {!!}
IN : Normal
IN = {!!}
_+N_ : Normal -> Normal -> Normal
(ShF / szF) +N (ShG / szG) = (ShF + ShG) / vv szF <?> szG
_*N_ : Normal -> Normal -> Normal
(ShF / szF) *N (ShG / szG) = (ShF * ShG) / vv \ f g -> szF f +Nat szG g
nInj : forall {X}(F G : Normal) -> <! F !>N X + <! G !>N X -> <! F +N G !>N X
nInj F G (tt , ShF , xs) = (tt , ShF) , xs
nInj F G (ff , ShG , xs) = (ff , ShG) , xs
data _^-1_ {S T : Set}(f : S -> T) : T -> Set where
from : (s : S) -> f ^-1 f s
nCase : forall {X} F G (s : <! F +N G !>N X) -> nInj F G ^-1 s
nCase F G ((tt , ShF) , xs) = from (tt , ShF , xs)
nCase F G ((ff , ShG) , xs) = from (ff , ShG , xs)
nOut : forall {X}(F G : Normal) -> <! F +N G !>N X -> <! F !>N X + <! G !>N X
nOut F G xs' with nCase F G xs'
nOut F G .(nInj F G xs) | from xs = xs
_++_ : forall {m n X} -> Vec X m -> Vec X n -> Vec X (m +Nat n)
xs ++ ys = {!!}
nPair : forall {X}(F G : Normal) -> <! F !>N X * <! G !>N X -> <! F *N G !>N X
nPair F G fxgx = {!!}
listNMonoid : {X : Set} -> Monoid (<! ListN !>N X)
listNMonoid = {!!}
sumMonoid : Monoid Nat
sumMonoid = record { neut = 0; _&_ = _+Nat_ }
normalTraversable : (F : Normal) -> Traversable <! F !>N
normalTraversable F = record
{ traverse = \ {{aG}} f -> vv \ s xs -> pure {{aG}} (_,_ s) <*> traverse f xs }
_oN_ : Normal -> Normal -> Normal
F oN (ShG / szG) = <! F !>N ShG / crush {{normalTraversable F}} szG
sizeT : forall {F}{{TF : Traversable F}}{X} -> F X -> Nat
sizeT = crush (\ _ -> 1)
normalT : forall F {{TF : Traversable F}} -> Normal
normalT F = F One / sizeT
shapeT : forall {F}{{TF : Traversable F}}{X} -> F X -> F One
shapeT = traverse (\ _ -> <>)
one : forall {X} -> X -> <! ListN !>N X
one x = 1 , (x , <>)
contentsT : forall {F}{{TF : Traversable F}}{X} -> F X -> <! ListN !>N X
contentsT = crush one
--[normal morphisms]
_-N>_ : Normal -> Normal -> Set
F -N> G = (s : Shape F) -> <! G !>N (Fin (size F s))
nMorph : forall {F G} -> F -N> G -> forall {X} -> <! F !>N X -> <! G !>N X
nMorph f (s , xs) with f s
... | s' , is = s' , map (proj xs) is
--Show how to compute the normal morphism representing a given natural
--transformation.
morphN : forall {F G} -> (forall {X} -> <! F !>N X -> <! G !>N X) -> F -N> G
morphN f s = {!!}
--[Hancock's tensor]
_><_ : Normal -> Normal -> Normal
(ShF / szF) >< (ShG / szG) = (ShF * ShG) / vv \ f g -> szF f *Nat szG g
swap : (F G : Normal) -> (F >< G) -N> (G >< F)
swap F G x = {!!}
drop : (F G : Normal) -> (F >< G) -N> (F oN G)
drop F G x = {!!}
--\section{Proving Equations}
record MonoidOK X {{M : Monoid X}} : Set where
field
absorbL : (x : X) -> neut & x == x
absorbR : (x : X) -> x & neut == x
assoc : (x y z : X) -> (x & y) & z == x & (y & z)
{- Do this after you've defined +Nat
natMonoidOK : MonoidOK Nat
natMonoidOK = record
{ absorbL = \ _ -> refl
; absorbR = _+zero
; assoc = assoc+
} where -- see below
_+zero : forall x -> x +Nat zero == x
zero +zero = refl
suc n +zero rewrite n +zero = refl
assoc+ : forall x y z -> (x +Nat y) +Nat z == x +Nat (y +Nat z)
assoc+ zero y z = refl
assoc+ (suc x) y z rewrite assoc+ x y z = refl
listNMonoidOK : {X : Set} -> MonoidOK (<! ListN !>N X)
listNMonoidOK {X} = {!!}
-}
{-
\begin{exe}[a not inconsiderable problem]
Find out what goes wrong when you try to state associativity of vector |++|,
let alone prove it. What does it tell you about our |==| setup?
\end{exe}
-}
record MonoidHom {X}{{MX : Monoid X}}{Y}{{MY : Monoid Y}}(f : X -> Y) : Set where
field
respNeut : f neut == neut
resp& : forall x x' -> f (x & x') == f x & f x'
fstHom : forall {X} -> MonoidHom {<! ListN !>N X}{Nat} fst
fstHom = record { respNeut = refl; resp& = \ _ _ -> refl }
record EndoFunctorOK F {{FF : EndoFunctor F}} : Set1 where
field
endoFunctorId : forall {X} ->
map {{FF}}{X} id == id
endoFunctorCo : forall {R S T}(f : S -> T)(g : R -> S) ->
map {{FF}} f o map g == map (f o g)
{- fool'e errand -}
vecEndoFunctorOK : forall {n} -> EndoFunctorOK \ X -> Vec X n
vecEndoFunctorOK = record
{ endoFunctorId = {!!}
; endoFunctorCo = \ f g -> {!!}
}
_=1=_ : forall {l}{S : Set l}{T : S -> Set l}
(f g : (x : S) -> T x) -> Set l
f =1= g = forall x -> f x == g x
infix 1 _=1=_
record EndoFunctorOKP F {{FF : EndoFunctor F}} : Set1 where
field
endoFunctorId : forall {X} ->
map {{FF}}{X} id =1= id
endoFunctorCo : forall {R S T}(f : S -> T)(g : R -> S) ->
map {{FF}} f o map g =1= map (f o g)
--\section{Laws for |Applicative| and |Traversable|}
record ApplicativeOKP F {{AF : Applicative F}} : Set1 where
field
lawId : forall {X}(x : F X) ->
pure {{AF}} id <*> x == x
lawCo : forall {R S T}(f : F (S -> T))(g : F (R -> S))(r : F R) ->
pure {{AF}} (\ f g -> f o g) <*> f <*> g <*> r == f <*> (g <*> r)
lawHom : forall {S T}(f : S -> T)(s : S) ->
pure {{AF}} f <*> pure s == pure (f s)
lawCom : forall {S T}(f : F (S -> T))(s : S) ->
f <*> pure s == pure {{AF}} (\ f -> f s) <*> f
applicativeEndoFunctorOKP : EndoFunctorOKP F {{applicativeEndoFunctor}}
applicativeEndoFunctorOKP = record
{ endoFunctorId = lawId
; endoFunctorCo = \ f g r ->
pure {{AF}} f <*> (pure {{AF}} g <*> r)
<< lawCo (pure f) (pure g) r !!=
pure {{AF}} (\ f g -> f o g) <*> pure f <*> pure g <*> r
=!! cong (\ x -> x <*> pure g <*> r) (lawHom (\ f g -> f o g) f) >>
pure {{AF}} (_o_ f) <*> pure g <*> r
=!! cong (\ x -> x <*> r) (lawHom (_o_ f) g) >>
pure {{AF}} (f o g) <*> r
<QED>
}
vecApplicativeOKP : {n : Nat} -> ApplicativeOKP \ X -> Vec X n
vecApplicativeOKP = {!!}
--ApplicativeHomomorphisms
_-:>_ : forall (F G : Set -> Set) -> Set1
F -:> G = forall {X} -> F X -> G X
record AppHom {F}{{AF : Applicative F}}{G}{{AG : Applicative G}}
(k : F -:> G) : Set1 where
field
respPure : forall {X}(x : X) -> k (pure x) == pure x
respApp : forall {S T}(f : F (S -> T))(s : F S) -> k (f <*> s) == k f <*> k s
monoidApplicativeHom :
forall {X}{{MX : Monoid X}}{Y}{{MY : Monoid Y}}
(f : X -> Y){{hf : MonoidHom f}} ->
AppHom {{monoidApplicative {{MX}}}} {{monoidApplicative {{MY}}}} f
monoidApplicativeHom f {{hf}} = record
{ respPure = \ x -> MonoidHom.respNeut hf
; respApp = MonoidHom.resp& hf
}
--Show that a homomorphism from |F| to |G| induces applicative structure
--on their pointwise sum.
homSum : forall {F G}{{AF : Applicative F}}{{AG : Applicative G}} ->
(f : F -:> G) ->
Applicative \ X -> F X + G X
homSum {{AF}}{{AG}} f = {!!}
homSumOKP : forall {F G}{{AF : Applicative F}}{{AG : Applicative G}} ->
ApplicativeOKP F -> ApplicativeOKP G ->
(f : F -:> G) -> AppHom f ->
ApplicativeOKP _ {{homSum f}}
homSumOKP {{AF}}{{AG}} FOK GOK f homf = {!!}
-- traversable laws
record TraversableOKP F {{TF : Traversable F}} : Set1 where
field
lawId : forall {X}(xs : F X) -> traverse id xs == xs
lawCo : forall {G}{{AG : Applicative G}}{H}{{AH : Applicative H}}
{R S T}(g : S -> G T)(h : R -> H S)(rs : F R) ->
let EH : EndoFunctor H ; EH = applicativeEndoFunctor
in map{H} (traverse g) (traverse h rs)
==
traverse{{TF}}{{applicativeComp AH AG}} (map{H} g o h) rs
lawHom : forall {G}{{AG : Applicative G}}{H}{{AH : Applicative H}}
(h : G -:> H){S T}(g : S -> G T) -> AppHom h ->
(ss : F S) ->
traverse (h o g) ss == h (traverse g ss)
-- fromNormal
Batch : Set -> Set -> Set
Batch X Y = Sg Nat \ n -> Vec X n -> Y
fromNormal : forall {F}{{TF : Traversable F}} -> TraversableOKP F ->
forall {X} -> <! normalT F !>N X -> F X
fromNormal {{TF}} tokf x = {!!}
-- fixpoints of normal functors
data Tree (N : Normal) : Set where
<$_$> : <! N !>N (Tree N) -> Tree N
NatT : Normal
NatT = Two / 0 <?> 1
zeroT : Tree NatT
zeroT = <$ tt , <> $>
sucT : Tree NatT -> Tree NatT
sucT n = <$ ff , n , <> $>
NatInd : forall {l}(P : Tree NatT -> Set l) ->
P zeroT ->
((n : Tree NatT) -> P n -> P (sucT n)) ->
(n : Tree NatT) -> P n
NatInd P z s n = {!!}
Dec : Set -> Set
Dec X = X + (X -> Zero)
eq? : (N : Normal)(sheq? : (s s' : Shape N) -> Dec (s == s')) ->
(t t' : Tree N) -> Dec (t == t')
eq? N sheq? t t' = {!!}