-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathIRIF.lagda
213 lines (189 loc) · 6.62 KB
/
IRIF.lagda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
%if False
\begin{code}
module IRIF where
open import IRDS public
\end{code}
%endif
So I went to this meeting with some friends who like containers,
induction-recursion, and other interesting animals in the zoo of
datatypes. I presented what I thought was just a boring |Desc|-like
rearrangement of Dybjer and Setzer's encoding of induction-recursion.
`That's not IR!' said the audience, and it remains an open problem
whether or not they were correct: it is certainly IR-ish, but we do
not yet know whether it captures just the same class of functors as
Dybjer and Setzer's encoding, or strictly more. (If the latter, we
shall need a new model construction, to ensure the system's
consistency.)
%format ka = "\C{\upkappa}"
%format Irish = "\D{Irish}"
%format Info = "\F{Info}"
I give an inductive-recursive definition of IR. The type
|Irish I| describes node structures where children can be interpreted
in |I|. Deferring the task of interpreting such a node, let us rather
compute the type of |Info|rmation we can learn from it. Note that
|Info {I} T| is large because |I| is, but fear not, for it is not
the type of the nodes themselves.
\begin{code}
mutual
data Irish (I : Set1) : Set1 where
io : Irish I
ka : Set -> Irish I
pi : (S : Set)(T : S -> Irish I) -> Irish I
sg : (S : Irish I)(T : Info S -> Irish I) -> Irish I
Info : forall {I} -> Irish I -> Set1
Info {I} io = I
Info (ka A) = Up A
Info (pi S T) = (s : S) -> Info (T s)
Info (sg S T) = Sg (Info S) \ s -> Info (T s)
\end{code}
To interpret |pi| and |sg|, we shall need to equip |Fam| with
pointwise lifting and dependent pairs, respectively.
%format PiF = "\F{\Uppi F}"
%format SgF = "\F{\Upsigma F}"
\begin{code}
PiF : (S : Set){J : S -> Set1}(T : (s : S) -> Fam (J s)) ->
Fam ((s : S) -> J s)
PiF S T = ((s : S) -> fst (T s)) , \ f s -> snd (T s) (f s)
SgF : {I : Set1}(S : Fam I){J : I -> Set1}(T : (i : I) -> Fam (J i)) ->
Fam (Sg I J)
SgF S T = Sg (fst S) (fst o (T o snd S))
, \ { (s , t) -> snd S s , snd (T (snd S s)) t }
\end{code}
Now, for any |T : Irish I|, if someone gives us a |Fam I| to represent
children, we can compute a |Fam (Info T)| --- a \emph{small} node structure
from which the large |Info T| can be extracted.
%format Node = "\F{Node}"
\begin{code}
Node : forall {I}(T : Irish I) -> Fam I -> Fam (Info T)
Node io X = X
Node (ka A) X = A , up
Node (pi S T) X = PiF S \ s -> Node (T s) X
Node (sg S T) X = SgF (Node S X) \ iS -> Node (T iS) X
\end{code}
A functor from |Fam I| to |Fam J| is then given by a pair
%format IF = "\F{IF}"
%format !>IF = !> "_{\!\F{IF}}"
%format <!_!>IF = <! _ !>IF
\begin{code}
IF : Set1 -> Set1 -> Set1
IF I J = Sg (Irish I) \ T -> Info T -> J
<!_!>IF : forall {I J} -> IF I J -> Fam I -> Fam J
<! T , d !>IF X = d $F Node T X
\end{code}
With a certain tedious inevitability, we find that Agda rejects the
obvious attempt to tie the knot.
%format DataIF = "\D{DataIF}"
%format !>if = !> "_{\!\F{if}}"
%format <!_!>if = <! _ !>if
\begin{spec}
mutual -- fails positivity and termination checks
data DataIF {I}(F : IF I I) : Set where
<$_$> : fst (<! F !>IF (DataIF F , <!_!>if)) -> DataIF F
<!_!>if : forall {I}{F : IF I I} -> DataIF F -> I
<!_!>if {F = F} <$ ds $> = snd (<! F !>IF (DataIF F , <!_!>if)) ds
\end{spec}
Again, specialization of |Node| fixes the problem
%format NoIF = "\F{NoIF}"
%format DeIF = "\F{DeIF}"
\begin{code}
mutual
data DataIF {I}(F : IF I I) : Set where
<$_$> : NoIF F (fst F) -> DataIF F
<!_!>if : forall {I}{F : IF I I} -> DataIF F -> I
<!_!>if {F = F} <$ rs $> = snd F (DeIF F (fst F) rs)
NoIF : forall {I}(F : IF I I)(T : Irish I) -> Set
NoIF F io = DataIF F
NoIF F (ka A) = A
NoIF F (pi S T) = (s : S) -> NoIF F (T s)
NoIF F (sg S T) = Sg (NoIF F S) \ s -> NoIF F (T (DeIF F S s))
DeIF : forall {I}(F : IF I I)(T : Irish I) -> NoIF F T -> Info T
DeIF F io r = <! r !>if
DeIF F (ka A) a = up a
DeIF F (pi S T) f = \ s -> DeIF F (T s) (f s)
DeIF F (sg S T) (s , t) = let s' = DeIF F S s in s' , DeIF F (T s') t
\end{code}
\nudge{Given that Agda lets us implement Irish IR, one wonders whether
it allows even more.}Irish IR is a little closer to the user
experience of IR in Agda, in that you give separately a description of your
data's node structure and the `algebra' which decodes it.
\begin{exe}[Irish |TU|]
Give a construction for the |TU| universe as a description-decoder pair in
|IF Set Set|.
\end{exe}
We should check that Irish IR allows at least as much as
Dybjer-Setzer.
\begin{exe}[Irish-to-Swedish]
Show how to define
%format DSIF = "\F{DSIF}"
\begin{spec}
DSIF : forall {I J} -> DS I J -> IF I J
DSIF T = ?
\end{spec}
such that
\[
|<! DSIF T !>DS| \cong |<! T !>IF|
\]
%if False
\begin{code}
DSIF : forall {I J} -> DS I J -> IF I J
DSIF (io j) = ka One , \ _ -> j
DSIF (sg S T)
= (sg (ka S) \ s -> fst (DSIF (T (down s))))
, \ { (s , t) -> snd (DSIF (T (down s))) t }
DSIF (de H T)
= (sg (pi H \ _ -> io) \ f -> fst (DSIF (T f)))
, \ { (f , t) -> snd (DSIF (T f)) t }
\end{code}
%endif
\end{exe}
We clearly have an identity for Irish IR.
%format idIF = "\F{idIF}"
\begin{code}
idIF : forall {I} -> IF I I
idIF = io , id
\end{code}
Now, |DS I J| had a substitution-for-|io| structure which induced a
notion of \emph{pairing}, because |io| marks `end of record'.
What makes the Irish encoding conductive to composition is that the
|io|-leaves of an |Irish I| mark where the \emph{children} go.
%format subIF = "\F{subIF}"
\begin{exe}[|subIF|]
Construct a substitution operator for |Irish J| with a refinement
of the following type.
\begin{spec}
subIF : forall {I J}(T : Irish J)(F : IF I J) -> Sg (Irish I) ?
subIF T F = ?
\end{spec}
%if False
\begin{code}
subIF : forall {I J}(T : Irish J)(F : IF I J) -> IF I (Info T)
subIF io F = F
subIF (ka A) F = ka A , id
subIF (pi S T) F
= (pi S \ s -> fst (subIF (T s) F))
, \ f s -> snd (subIF (T s) F) (f s)
subIF (sg S T) F with subIF S F
... | SF , f = (sg SF \ sf -> fst (subIF (T (f sf)) F))
, \ { (sf , tf) -> f sf , snd (subIF (T (f sf)) F) tf }
\end{code}
%endif
Hint: you will find out what you need in the |sg| case.
\end{exe}
%format coIF = "\F{coIF}"
\begin{exe}[|coIF|]
Now define composition for Irish IR functors.
\begin{spec}
coIF : forall {I J K} -> IF J K -> IF I J -> IF I K
coIF G F = ?
\end{spec}
%if False
\begin{code}
coIF : forall {I J K} -> IF J K -> IF I J -> IF I K
coIF (T , d) F with subIF T F
... | TF , f = TF , (d o f)
\end{code}
%endif
\end{exe}
Some of us are inclined to suspect that |IF| does admit more functors
than |DS|, but the exact status of Irish induction-recursion remains
the stuff of future work.