-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathLec2.agda
126 lines (89 loc) · 3.44 KB
/
Lec2.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
module Lec2 where
open import Basics
open import Vec
infixr 4 _->>_
infixr 3 _!-_
infixr 3 _<:_
infixl 7 _$_
data Type : Set where
iota : Type
_->>_ : (sig tau : Type) -> Type
data Context : Set where
Em : Context
_::_ : (Gam : Context)(sig : Type) -> Context
data _<:_ (tau : Type) : Context -> Set where
zero : forall {Gam} -> tau <: (Gam :: tau)
suc : forall {Gam sig} (x : tau <: Gam) -> tau <: (Gam :: sig)
data _!-_ : Context -> Type -> Set where
var : forall {Gam tau} (x : tau <: Gam)
-> --------------------
Gam !- tau
-- $\lambda$-abstraction extends the context
lam : forall {Gam sig tau} (b : Gam :: sig !- tau)
-> ---------------------------
Gam !- sig ->> tau
-- application demands a type coincidence
_$_ : forall {Gam sig tau} (f : Gam !- sig ->> tau) (s : Gam !- sig)
-> -----------------------------------------------
Gam !- tau
[_]T : Type -> Set
[ tau ]T = {!!}
[_]C : Context -> Set
[ Gam ]C = {!!}
[_]v : forall {Gam tau} -> tau <: Gam -> [ Gam ]C -> [ tau ]T
[ i ]v g = {!!}
[_]t : forall {Gam tau} -> Gam !- tau -> [ Gam ]C -> [ tau ]T
[ t ]t = {!!}
eval : forall {tau} -> Em !- tau -> [ tau ]T
eval t = [ t ]t {!!}
-- substitution with a friendly fish
Ren Sub : Context -> Context -> Set
Ren Gam Del = forall {tau} -> tau <: Gam -> tau <: Del
Sub Gam Del = forall {tau} -> tau <: Gam -> Del !- tau
_<><_ : Context -> List Type -> Context
xz <>< <> = xz
xz <>< (x , xs) = xz :: x <>< xs
infixl 4 _<><_
Shub : Context -> Context -> Set
Shub Gam Del = forall Xi -> Sub (Gam <>< Xi) (Del <>< Xi)
_//_ : forall {Gam Del}(theta : Shub Gam Del){tau} ->
Gam !- tau -> Del !- tau
theta // t = {!!}
wkr : forall {Gam Del sg} -> Ren Gam Del -> Ren (Gam :: sg) (Del :: sg)
wkr r x = {!!}
ren : forall {Gam Del} -> Ren Gam Del -> Shub Gam Del
ren r Xi = {!!}
wks : forall {Gam Del sg} -> Sub Gam Del -> Sub (Gam :: sg) (Del :: sg)
wks s x = {!!}
sub : forall {Gam Del} -> Sub Gam Del -> Shub Gam Del
sub s Xi = {!!}
-- a modern convenience
weak : forall {Gam} Xi -> Ren Gam (Gam <>< Xi)
weak <> i = i
weak (_ , Xi) i = weak Xi (suc i)
lambda' : forall {Gam sg tau} ->
((forall {Xi} -> Gam :: sg <>< Xi !- sg) -> Gam :: sg !- tau) ->
Gam !- sg ->> tau
lambda' f = lam (f \ {Xi} -> var (weak Xi zero))
myTest' : Em !- iota ->> iota
myTest' = lambda' \ x -> x
_<>>_ : Context -> List Type -> List Type
Em <>> ys = ys
(xz :: x) <>> ys = xz <>> (x , ys)
revLem : forall Del Phi ->
Em <>< (Del <>> Phi) == Del <>< Phi
revLem Em Phi = refl
revLem (Del :: sig) Phi = revLem Del (sig , Phi)
lem : forall Del Gam Xi ->
Del <>> <> == Gam <>> Xi -> Gam <>< Xi == Del
lem Del Em .(Del <>> <>) refl = revLem Del <>
lem Del (Gam :: sig) Xi q = lem Del Gam (sig , Xi) q
lambda : forall {Gam sg tau} ->
((forall {Del Xi}{{_ : Del <>> <> == Gam <>> (sg , Xi)}} -> Del !- sg) ->
Gam :: sg !- tau) ->
Gam !- sg ->> tau
lambda {Gam} f =
lam (f \ {Del Xi}{{q}} ->
subst (lem Del Gam (_ , Xi) q) (\ Gam -> Gam !- _) (var (weak Xi zero)))
myTest : Em !- (iota ->> iota) ->> (iota ->> iota)
myTest = lambda \ f -> lambda \ x -> f $ (f $ x)