-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathLec3-Cam.agda
67 lines (46 loc) · 1.44 KB
/
Lec3-Cam.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
module Lec3 where
open import Basics public
open import Vec public
record Con : Set1 where
constructor _<1_
field
Sh : Set -- a set of shapes
Po : Sh -> Set -- a family of positions
<!_!>c : Set -> Set
<!_!>c X = Sg Sh \ s -> Po s -> X
open Con public
infixr 1 _<1_
Kc : Set -> Con
Kc A = A <1 \ _ -> Zero
Ic : Con
Ic = One <1 \ _ -> One
_+c_ : Con -> Con -> Con
(S <1 P) +c (S' <1 P') = (S + S') <1 (vv P <?> P')
_*c_ : Con -> Con -> Con
(S <1 P) *c (S' <1 P') = (S * S') <1 (vv \ s s' -> P s + P' s')
Sgc : (A : Set)(C : A -> Con) -> Con
Sgc A C = (Sg A (Sh o C)) <1 (vv \ a s -> Po (C a) s)
Pic : (A : Set)(C : A -> Con) -> Con
Pic A C = ((a : A) -> Sh (C a)) <1 (\ f -> Sg A \ a -> Po (C a) (f a))
_oc_ : Con -> Con -> Con
(S <1 P) oc C = Sgc S \ s -> Pic (P s) \ p -> C
_-c>_ : Con -> Con -> Set
(S <1 P) -c> (S' <1 P') = Sg (S -> S') \ f -> (s : S) -> P' (f s) -> P s
_/c_ : forall {C C'} -> C -c> C' -> forall {X} -> <! C !>c X -> <! C' !>c X
(to , fro) /c (s , k) = to s , (k o fro s)
data W (C : Con) : Set where
<$_$> : <! C !>c (W C) -> W C
BT : Con
BT = Two <1 (Zero <?> Two)
leaf : W BT
leaf = <$ (tt , magic) $>
node : W BT -> W BT -> W BT
node s t = <$ ff , (s <?> t) $>
_^*_ : Con -> Set -> Set
C ^* X = W (Kc X +c C)
_-_ : (X : Set)(x : X) -> Set
X - x = Sg X \ x' -> x' == x -> Zero
der : Con -> Con
der (S <1 P) = Sg S P <1 vv \ s p -> P s - p
BTZ : Set
BTZ = List (<! der BT !>c (W BT)) * W BT