-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathNormF.lagda
139 lines (122 loc) · 4.28 KB
/
NormF.lagda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
%if False
\begin{code}
module NormF where
open import Normal public
\end{code}
%endif
\section{Fixpoints of Normal Functors}
The universal first order simple datatype is given by taking the least
fixpoint of a normal functor.
%format Tree = "\D{Tree}"
%format <$ = "\C{\langle}"
%format $> = "\C{\rangle}"
%format <$_$> = <$ _ $>
\begin{code}
data Tree (N : Normal) : Set where
<$_$> : <! N !>N (Tree N) -> Tree N
\end{code}
We may, for example, define the natural numbers this way:
%format NatT = "\F{NatT}"
%format zeroT = "\F{zeroT}"
%format sucT = "\F{sucT}"
\begin{code}
NatT : Normal
NatT = Two / 0 <?> 1
zeroT : Tree NatT
zeroT = <$ tt , <> $>
sucT : Tree NatT -> Tree NatT
sucT n = <$ ff , n , <> $>
\end{code}
Of course, to prove these are the natural numbers, we need the eliminator
as well as the constructors.
\begin{exe}
Prove the principle of induction for these numbers.
%format NatInd = "\F{NatInd}"
\begin{spec}
NatInd : forall {l}(P : Tree NatT -> Set l) ->
P zeroT ->
((n : Tree NatT) -> P n -> P (sucT n)) ->
(n : Tree NatT) -> P n
NatInd P z s n = ?
\end{spec}
%if False
\begin{code}
NatInd : forall {l}(P : Tree NatT -> Set l) ->
P zeroT ->
((n : Tree NatT) -> P n -> P (sucT n)) ->
(n : Tree NatT) -> P n
NatInd P z s <$ tt , <> $> = z
NatInd P z s <$ ff , n , <> $> = s n (NatInd P z s n)
\end{code}
%endif
\end{exe}
Indeed, there's a generic induction principle for the whole lot of these types.
First, we need predicate transformer to generate the induction hypothesis.
%format All = "\F{All}"
\begin{code}
All : forall {l X}(P : X -> Set l){n} -> Vec X n -> Set l
All P <> = One
All P (x , xs) = P x * All P xs
\end{code}
We then acquire
%format induction = "\F{induction}"
%format hyps = "\F{hyps}"
\begin{code}
induction : forall (N : Normal){l}(P : Tree N -> Set l) ->
((s : Shape N)(ts : Vec (Tree N) (size N s)) -> All P ts -> P <$ s , ts $>) ->
(t : Tree N) -> P t
induction N P p <$ s , ts $> = p s ts (hyps ts) where
hyps : forall {n}(ts : Vec (Tree N) n) -> All P ts
hyps <> = <>
hyps (t , ts) = induction N P p t , hyps ts
\end{code}
\begin{exe}[decidable equality]
%format Dec = "\F{Dec}"
%format Zero = "\D{Zero}"
We say a property is \emph{decided} if we know whether it is true or false,
where falsity is indicated by function to |Zero|, an empty type.
\begin{spec}
Dec : Set -> Set
Dec X = X + (X -> Zero)
\end{spec}
Show that if a normal functor has decidable equality for its shapes,
then its fixpoint also has decidable equality.
%format eq? = "\F{eq?}"
\begin{spec}
eq? : (N : Normal)(sheq? : (s s' : Shape N) -> Dec (s == s')) ->
(t t' : Tree N) -> Dec (t == t')
eq? N sheq? t t' = ?
\end{spec}
%if False
\begin{code}
mutual
eq? : (N : Normal)(sheq? : (s s' : Shape N) -> Dec (s == s')) ->
(t t' : Tree N) -> Dec (t == t')
eq? N sheq? <$ s , ts $> <$ s' , ts' $> with sheq? s s'
eq? N sheq? <$ s , ts $> <$ .s , ts' $> | tt , refl with eqs? N sheq? ts ts'
eq? N sheq? <$ s , ts $> <$ .s , .ts $> | tt , refl | tt , refl = tt , refl
eq? N sheq? <$ s , ts $> <$ .s , ts' $> | tt , refl | ff , no = ff , no o inj where
inj : forall {s}{ts ts' : Vec (Tree N) (size N s)} ->
<$ s , ts $> == <$ s , ts' $> -> ts == ts'
inj refl = refl
eq? N sheq? <$ s , xs $> <$ s' , ts' $> | ff , no = ff , no o inj where
inj : forall {s s' : Shape N}
{ts : Vec (Tree N) (size N s)}{ts' : Vec (Tree N) (size N s')} ->
<$ s , ts $> == <$ s' , ts' $> -> s == s'
inj refl = refl
eqs? : (N : Normal)(sheq? : (s s' : Shape N) -> Dec (s == s')) ->
{n : Nat} -> (ts ts' : Vec (Tree N) n) -> Dec (ts == ts')
eqs? N sheq? <> <> = tt , refl
eqs? N sheq? (t , ts) (t' , ts') with eq? N sheq? t t' | eqs? N sheq? ts ts'
eqs? N sheq? (t , ts) (.t , .ts) | tt , refl | tt , refl = tt , refl
eqs? N sheq? (t , ts) (.t , ts') | tt , refl | ff , no = ff , no o inj where
inj : forall {n X}{t : X}{ts ts' : Vec X n} ->
_==_ {X = Vec X (suc n)} (t , ts) (t , ts') -> ts == ts'
inj refl = refl
eqs? N sheq? (t , ts) (t' , ts') | ff , no | _ = ff , no o inj where
inj : forall {n X}{t t' : X}{ts ts' : Vec X n} ->
_==_ {X = Vec X (suc n)} (t , ts) (t' , ts') -> t == t'
inj refl = refl
\end{code}
%endif
\end{exe}