-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDiff.agda
120 lines (104 loc) · 3.37 KB
/
Diff.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
module Diff where
data Nat : Set where ze : Nat ; su : Nat -> Nat
data Fin : Nat -> Set where
ze : forall {n} -> Fin (su n)
su : forall {n} -> Fin n -> Fin (su n)
data Flg : Set where nml dgn : Flg
data Reg : Flg -> Nat -> Set where
-- the normal regulars
# : forall {f n} -> Fin n -> Reg f n
`0 `1 : forall {f n} -> Reg f n
_`+_ _`*_ : forall {f n} -> Reg f n -> Reg f n -> Reg f n
`Mu : forall {f n} -> Reg f (su n) -> Reg f n
-- the degenerate regulars
`wk : forall {n} -> Reg dgn n -> Reg dgn (su n)
_`/_ : forall {n} -> Reg dgn (su n) -> Reg dgn n -> Reg dgn n
-- everything can degenerate
degenerate : forall {f n} -> Reg f n -> Reg dgn n
degenerate (# x) = # x
degenerate `0 = `0
degenerate `1 = `1
degenerate (s `+ t) = degenerate s `+ degenerate t
degenerate (s `* t) = degenerate s `* degenerate t
degenerate (`Mu t) = `Mu (degenerate t)
degenerate (`wk t) = `wk t
degenerate (f `/ s) = f `/ s
module _
(I : Nat -> Set)
(bv : forall {n} -> I (su n))
(wk : forall {n} -> I n -> I (su n))
(tm : forall {n} -> I n -> Reg nml n)
where
lift : forall {n m} -> (Fin n -> I m) -> (Fin (su n) -> I (su m))
lift f ze = bv
lift f (su i) = wk (f i)
act : forall {n m} -> (Fin n -> I m) -> Reg nml n -> Reg nml m
act al (# x) = tm (al x)
act al `0 = `0
act al `1 = `1
act al (s `+ t) = act al s `+ act al t
act al (s `* t) = act al s `* act al t
act al (`Mu f) = `Mu (act (lift al) f)
ren = act Fin ze su #
sub = act (Reg nml) (# ze) (ren su) (\ t -> t)
_/_ : forall {n} -> Reg nml (su n) -> Reg nml n -> Reg nml n
f / s = sub (\ { ze -> s ; (su i) -> # i }) f
-- everything can be normalized
normalize : forall {f n} -> Reg f n -> Reg nml n
normalize (# x) = # x
normalize `0 = `0
normalize `1 = `1
normalize (s `+ t) = normalize s `+ normalize t
normalize (s `* t) = normalize s `* normalize t
normalize (`Mu f) = `Mu (normalize f)
normalize (`wk t) = ren su (normalize t)
normalize (f `/ s) = normalize f / normalize s
delta : forall {n f m} -> Fin n -> Fin n -> Reg f m
delta ze ze = `1
delta ze (su j) = `0
delta (su i) ze = `0
delta (su i) (su j) = delta i j
dbyd : forall {n} -> Fin n -> Reg dgn n -> Reg dgn n
dbyd x (# y) = delta x y
dbyd x `0 = `0
dbyd x `1 = `0
dbyd x (s `+ t) = dbyd x s `+ dbyd x t
dbyd x (s `* t) = (dbyd x s `* t) `+ (s `* dbyd x t)
dbyd x (`Mu f) =
`Mu (`wk (dbyd (su x) f `/ `Mu f) `+
(`wk (dbyd ze f `/ `Mu f) `* # ze))
dbyd ze (`wk t) = `0
dbyd (su x) (`wk t) = `wk (dbyd x t)
dbyd x (f `/ s) =
(dbyd (su x) f `/ s) `+
((dbyd ze f `/ s) `* dbyd x s)
dbydn : forall {n} -> Fin n -> Reg nml n -> Reg nml n
dbydn x (# y) = delta x y
dbydn x `0 = `0
dbydn x `1 = `0
dbydn x (s `+ t) = dbydn x s `+ dbydn x t
dbydn x (s `* t) = (dbydn x s `* t) `+ (s `* dbydn x t)
dbydn x (`Mu f) =
`Mu (ren su (dbydn (su x) f / `Mu f) `+
(ren su (dbydn ze f / `Mu f) `* # ze))
data Zero : Set where
record One : Set where constructor <>
data Two : Set where ff tt : Two
record _><_ (S : Set)(T : S -> Set) : Set where
constructor _,_
field
fst : S
snd : T fst
open _><_ public
_*_ _+_ : Set -> Set -> Set
S * T = S >< \ _ -> T
S + T = Two >< \ { ff -> S ; tt -> T }
data Mu (f : Reg nml (su ze)) : Set
[[_]] : Reg nml ze -> Set
data Mu f where
<_> : [[ f / `Mu f ]] -> Mu f
[[ `0 ]] = Zero
[[ `1 ]] = One
[[ s `+ t ]] = [[ s ]] + [[ t ]]
[[ s `* t ]] = [[ s ]] * [[ t ]]
[[ `Mu f ]] = Mu f