-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathEWAM-Crib.agda
243 lines (212 loc) · 7.61 KB
/
EWAM-Crib.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
module EWAM-Crib where
data Nat : Set where
ze : Nat
su : Nat -> Nat
{-# BUILTIN NATURAL Nat #-}
natElim : forall {l}
(n : Nat) -- target
(P : Nat -> Set l) -- motive
(z : P ze) -- methods
(s : (k : Nat) -> P k -> P (su k))
->
P n -- the return type is an instance of the motive
natElim ze P z s = z
natElim (su k) P z s = s k (natElim k P z s)
natCase : forall {l}
(n : Nat) -- target
(P : Nat -> Set l) -- motive
(z : P ze) -- methods
(s : (k : Nat) -> P (su k))
->
P n -- the return type is an instance of the motive
natCase n P z s = natElim n P z \ k kh -> s k
{-
plus : Nat -> Nat -> Nat
plus = \ x -> natElim x (\ x -> Nat -> Nat) (\ y -> y) (\ x plusx y -> su (plusx y))
-}
mutual
data _=? {X : Set} : X -> Set where
[_]=_ : (x y : X) -> x =?
[_]? : forall {X}(x : X){p : x =?} -> X
[ x ]?{[ .x ]= y} = y
postulate `plus : Nat -> Nat -> Nat
mkPlus : (x y : Nat) -> `plus x y =?
mkPlus x y = natElim x (\ x -> (y : Nat) -> `plus x y =?)
(\ y -> [ `plus ze y ]= y)
(\ x xh y -> [ `plus (su x) y ]= su ([ `plus x y ]?{xh y}))
y
plus : Nat -> Nat -> Nat
plus x y = [ `plus x y ]?{mkPlus x y}
data _~_ {X : Set}(x : X) : X -> Set where
r~ : x ~ x
R~ : {X : Set}(x : X) -> x ~ x
R~ x = r~
J : forall {l}{X : Set}{x y : X}(q : x ~ y)
(P : (y : X)(q : x ~ y) -> Set l)
(px : P x r~)
->
P y q
J r~ P px = px
_~$~_ : {S T : Set}
{f g : S -> T} -> f ~ g ->
{x y : S} -> x ~ y ->
f x ~ g y
_~$~_ {S}{T}{f}{g} fg {x}{y} xy = J fg (\ g q -> {x y : _} -> x ~ y -> f x ~ g y)
(\ {x}{y} xy -> J xy (\ y q -> f x ~ f y) r~)
xy
asso : (x y z : Nat) -> plus (plus x y) z ~ plus x (plus y z)
asso x y z = natElim x (\ x -> (y z : Nat) -> plus (plus x y) z ~ plus x (plus y z))
(\ y z -> r~)
(\ x xh y z -> R~ su ~$~ xh y z)
y z
record One {l} : Set l where constructor <>
record _><_ {l}(S : Set l)(T : S -> Set l) : Set l where
constructor _,_
field
fst : S
snd : T fst
open _><_
infixr 10 _,_
TEL : Nat -> Set1
TEL n = natElim n (\ _ -> Set1)
One
\ n H -> Set >< \ X -> X -> H
EL : forall n -> TEL n -> Set
EL n = natElim n (\ n -> TEL n -> Set)
(\ <> -> One)
\ n nH (X , T) -> X >< \ x -> nH (T x)
TELQ : forall n -> (T : TEL n)(as bs : EL n T) -> Set
TELQ n = natElim n (\ n -> (T : TEL n)(as bs : EL n T) -> Set)
(\ <> <> <> -> One)
\ n nH (X , T) (a , as) (b , bs) ->
(a ~ b) >< \ q -> nH (T a) as
(J q (\ b q -> EL n (T b) -> EL n (T a)) (\ bs -> bs) bs)
data Tel : Nat -> Set1 where
[] : Tel ze
_,-_ : forall {n}(X : Set)(T : X -> Tel n) -> Tel (su n)
El : forall {n} -> Tel n -> Set
El [] = One
El (X ,- T) = X >< \ x -> El (T x)
TelQ : forall {n}(T : Tel n) -> El T -> El T -> Set
TelQ [] <> <> = One
TelQ (X ,- T) (a , as) (b , bs) = (a ~ b) >< \ q -> TelQ (T b) (J q (\ a q -> El (T a)) as) bs
NoConfNat : (n m : Nat)(G : (n ~ m) -> Set) -> Set
NoConfNat ze ze G = G r~
NoConfNat ze (su m) G = One
NoConfNat (su n) ze G = One
NoConfNat (su n) (su m) G = (q : n ~ m) -> G (R~ su ~$~ q)
noConfNat : {n m : Nat}(q : n ~ m)(G : (n ~ m) -> Set) -> NoConfNat n m G -> G q
noConfNat {n} q G h = J q (\ m q -> (G : (n ~ m) -> Set) -> NoConfNat n m G -> G q)
(natElim n (\ n -> (G : n ~ n -> Set) -> NoConfNat n n G -> G r~)
(\ G h -> h)
(\ k kh G h -> h r~) )
G h
data Vec (X : Set) : Nat -> Set where
[] : Vec X ze
_,-_ : forall {n} -> X -> Vec X n -> Vec X (su n)
infixr 20 _,-_
vecElim : forall {l}{X : Set}{n : Nat}(xs : Vec X n)
(P : (n : Nat) -> Vec X n -> Set l)
(z : P ze [])
(s : {n : Nat}(x : X)(xs : Vec X n) -> P n xs -> P (su n) (x ,- xs))
->
P n xs
vecElim [] P z s = z
vecElim (x ,- xs) P z s = s x xs (vecElim xs P z s)
vtail : {Y : Set}{m : Nat}(ys : Vec Y (su m)) -> Vec Y m
vtail {Y}{m} ys = vecElim ys
(\ n xs -> {m : Nat}(ys : Vec Y (su m))
-> TELQ 2 (Nat , \ n -> Vec Y n , \ _ -> <>) (su m , ys , <>) (n , xs , <>)
-> Vec Y m)
(\ {m} ys (q0 , q1 , <>) ->
noConfNat q0 (\ _ -> Vec Y m) <>)
(\ {n} x xs h {m} ys (q0 , q1 , <>) ->
noConfNat q0 (\ q0 -> ys ~
fst
(J q0
(λ b q →
EL 1 (Vec Y b , (λ _ → <>)) → EL 1 (Vec Y (su m) , (λ _ → <>)))
(λ bs → bs) (x ,- xs , <>))
-> Vec Y m)
(\ q2 -> J q2 (\ n q2 -> (xs : Vec Y n) ->
ys ~
fst
(J (R~ su ~$~ q2)
(λ b q →
EL 1 (Vec Y b , (λ _ → <>)) → EL 1 (Vec Y (su m) , (λ _ → <>)))
(λ bs → bs) (x ,- xs , <>)) →
Vec Y m)
(\ xs _ -> xs)
xs)
q1 )
ys (r~ , r~ , <>)
trichotomy : (n m : Nat)
(P : Nat -> Nat -> Set)
(lt : (n m : Nat) -> P n (plus n (su m)))
(eq : (n : Nat) -> P n n)
(gt : (n m : Nat) -> P (plus n (su m)) n)
->
P n m
trichotomy = \ n -> natElim n (\ n -> (m : Nat)
(P : Nat -> Nat -> Set)
(lt : (n m : Nat) -> P n (plus n (su m)))
(eq : (n : Nat) -> P n n)
(gt : (n m : Nat) -> P (plus n (su m)) n)
->
P n m)
(\ m -> natElim m (\ m -> (P : Nat → Nat → Set) →
((n₂ m₁ : Nat) → P n₂ (plus n₂ (su m₁))) →
((n₂ : Nat) → P n₂ n₂) →
((n₂ m₁ : Nat) → P (plus n₂ (su m₁)) n₂) → P ze m)
(\ P lt eq gt -> eq ze)
\ m h P lt eq gt -> lt ze m)
\ n nh m -> natElim m (\ m -> (P : Nat → Nat → Set) →
((n₁ m₁ : Nat) → P n₁ (plus n₁ (su m₁))) →
((n₁ : Nat) → P n₁ n₁) →
((n₁ m₁ : Nat) → P (plus n₁ (su m₁)) n₁) → P (su n) m
)
(\ P lt eq gt -> gt ze n)
\ m mh P lt eq gt -> nh m (\ n m -> P (su n) (su m))
(\ n m -> lt (su n) m)
(\ n -> eq (su n))
(\ n m -> gt (su n) m)
natPlusRec : (n : Nat)
(P : Nat -> Set)
(h : (n : Nat)(p : (x y : Nat) -> n ~ su (plus x y) -> P y) -> P n)
->
P n
natPlusRec n P h = h n (natElim n (\ n -> (x y : Nat) → n ~ su (plus x y) → P y)
(\ x y q -> noConfNat q (\ _ -> P y) <>)
\ n nh x -> natCase x (\ x -> (y : Nat) → su n ~ su (plus x y) → P y)
(\ y q -> noConfNat q (\ _ -> P y) \ q' -> J q' (\ y _ -> P y) (h n nh))
\ x y q -> noConfNat q (\ _ -> P y) \ q' -> nh x y q')
postulate gcd' : Nat -> Nat -> Nat
mkGcd : (x y : Nat) -> gcd' x y =?
mkGcd x y = natPlusRec x (\ x -> (y : Nat) -> gcd' x y =?)
(\ x xh y -> natPlusRec y (\ y -> gcd' x y =?)
\ y yh -> natCase x (\ x ->
((x₂ y₃ : Nat) →
x ~ su (plus x₂ y₃) → (y₄ : Nat) → gcd' y₃ y₄ =?) ->
((x₂ y₃ : Nat) → y ~ su (plus x₂ y₃) → gcd' x y₃ =?) ->
gcd' x y =?)
(\ xh yh -> [ gcd' ze y ]= y)
(\ x xh yh -> natCase y (\ y -> ((x₂ y₃ : Nat) → y ~ su (plus x₂ y₃) → gcd' (su x) y₃ =?)
-> gcd' (su x) y =?)
(\ yh -> [ gcd' (su x) ze ]= su x)
(\ y yh -> trichotomy x y (\ x y ->
((x₂ y₃ : Nat) →
su x ~ su (plus x₂ y₃) → (y₄ : Nat) → gcd' y₃ y₄ =?) ->
((x₂ y₃ : Nat) →
su y ~ su (plus x₂ y₃) → gcd' (su x) y₃ =?) ->
gcd' (su x) (su y) =?)
(\ n m xh yh -> [ gcd' (su n) (su (plus n (su m))) ]=
[ gcd' (su n) (su m) ]?{yh n (su m) r~})
(\ n xh yh -> [ gcd' (su n) (su n) ]= su n)
(\ n m xh yh -> [ gcd' (su (plus n (su m))) (su n) ]=
[ gcd' (su m) (su n) ]?{xh n (su m) r~ (su n)})
xh yh)
yh)
xh yh)
y
gcd : Nat -> Nat -> Nat
gcd x y = [ gcd' x y ]?{mkGcd x y}