-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathEffW.hs
510 lines (406 loc) · 15.5 KB
/
EffW.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
{-----------------------------------------------------------------------------
An Effects-and-Handlers Implementation of Hindley-Milner Typechecking
Points of interest include
1. I use a free monad indexed over "Time" to represent computations which
take time, during which progress can occur. Progress is packaged as the
morphisms of the Time category, and is propagated rather quietly.
2. Instead of representing the typing context explicitly as a data structure,
all contextualisation is done by effect handlers, responding to the effects
enabled by the monad.
-----------------------------------------------------------------------------}
{-# LANGUAGE DataKinds, GADTs, KindSignatures, RankNTypes, StandaloneDeriving,
QuantifiedConstraints, LambdaCase, ScopedTypeVariables, TypeOperators,
TypeFamilies, UndecidableInstances, ConstraintKinds, TupleSections,
IncoherentInstances, OverlappingInstances, PatternSynonyms,
ViewPatterns, TypeOperators, LiberalTypeSynonyms #-}
module EffW where
import Data.Kind -- it's going to be this sort of adventure
import Unsafe.Coerce -- and this sort
------------------------------------------------------------------------------
-- Indexing
------------------------------------------------------------------------------
-- index-respecting functions
type (-:>) s t i = s i -> t i
type All f = forall i. f i
infixr 3 -:>
data (:*) (s :: a -> Type)(t :: a -> Type)(i :: a) where
(:*) :: s i -> t i -> (s :* t) i
infixr 4 :*
newtype K (t :: Type)(i :: a) = K {unK :: t} deriving Eq
kmap :: (s -> t) -> All (K s -:> K t)
kmap f (K s) = K (f s)
data Some (f :: a -> Type) :: Type where
Some :: f x -> Some f
deriving instance (forall x. Show (f x)) => Show (Some f)
------------------------------------------------------------------------------
-- Time
------------------------------------------------------------------------------
data Time
-- Step sequences through time are snoc-lists which join up like dominoes
data (&>) (s :: Time)(t :: Time) :: Type where
Now :: t &> t
(:<) :: r &> s -> Step s t -> r &> t
class Timed (v :: Time -> Type) where
-- value-level &> gives the action of type-level &> ...
(&>) :: v s -> s &> t -> v t
-- ...by iterating the
step :: v s -> Step s t -> v t
v &> Now = v
v &> (sz :< s) = step (v &> sz) s
instance Timed ((&>) r) where
step = (:<)
now :: v s -> s &> s
now _ = Now
instance Timed (K a) where
K a &> _ = K a
step (K a) _ = K a
instance (Timed s, Timed t) => Timed (s :* t) where
step (s :* t) u = step s u :* step t u
class LE (s :: Time)(t :: Time) where
lesson :: s &> t
class SegTo (t :: Time) where
type SegFrom t :: Time
seg :: SegFrom t &> t
instance LE s s where
lesson = Now
instance (LE s (SegFrom t), SegTo t) => LE s t where
lesson = lesson &> seg
type Kripke v t = forall u. LE t u => v u
kripke :: Timed v => All (v -:> Kripke v)
kripke v = v &> lesson
kripkefy :: Timed v => All (v -:> (Kripke v -:> f) -:> f)
kripkefy v k = k (kripke v)
class MoTime (m :: (Time -> Type) -> (Time -> Type)) where
retNow :: Timed v => All (v -:> m v)
(>>>=) :: (Timed f, Timed g)
=> m f s
-> (forall t. (SegTo t, SegFrom t ~ s) =>
Kripke f t -> m g t)
-> m g s
(>>>) :: (Timed f, Timed g)
=> m f s
-> (forall t. (SegTo t, SegFrom t ~ s) => m g t)
-> m g s
mf >>> mg = mf >>>= \ _ -> mg
split
:: (Timed s, Timed t)
=> All ((s :* t) -:> (Kripke s -:> Kripke t -:> f) -:> f)
split (s :* t) f = f (kripke s) (kripke t)
------------------------------------------------------------------------------
-- de Bruijn Indices
------------------------------------------------------------------------------
-- natural numbers, for how many things are in scope
data N = Z | S N
-- de Bruijn indices, for which things are in scope
data Inx (n :: N) :: Type where
Zi :: Inx (S n)
Si :: Inx n -> Inx (S n)
deriving instance Eq (Inx n)
instance Show (Inx n) where
show = show . go where
go :: forall n. Inx n -> Int
go Zi = 0
go (Si i) = 1 + go i
-------
-- if you know an Inx n, n isn't Z
data Pos (n :: N) :: Type where
Pos :: Pos (S n)
inxPos :: Inx n -> Pos n
inxPos Zi = Pos
inxPos (Si _) = Pos
-------
-- thin j i is never j
thin :: Inx (S n) -> Inx n -> Inx (S n)
thin Zi i = Si i
thin (Si j) Zi = Zi
thin (Si j) (Si i) = Si (thin j i)
-- thick j j = Nothing; thick j (thin j i) = i
thick :: Inx (S n) -> Inx (S n) -> Maybe (Inx n)
thick Zi Zi = Nothing
thick Zi (Si j) = pure j
thick (Si j) Zi = case inxPos j of Pos -> pure Zi
thick (Si j) (Si i) = case inxPos j of Pos -> Si <$> thick i j
------------------------------------------------------------------------------
-- What changes with time?
------------------------------------------------------------------------------
data Step (s :: Time)(t :: Time) :: Type where
(:/:) :: Ty Z -> ExVar -> Step t t
type ExVar =
( String -- for mnemonic purposes
, Int -- for freshness
)
data Ty (n :: N)
= E ExVar -- existential type variables
| U (Inx n)
| Ty n :-> Ty n
deriving (Show, Eq)
closed :: Ty Z -> Ty n
closed = unsafeCoerce
newtype Tyme (t :: Time) = Ty (Ty Z) deriving (Show, Eq)
tiE :: All (K ExVar -:> Tyme)
tiE (K e) = Ty (E e)
data UnArrEh (i :: Time) where
UnArrAye :: Kripke Tyme i -> Kripke Tyme i -> UnArrEh i
UnArrNaw :: UnArrEh i
unArrEh :: Tyme i -> UnArrEh i
unArrEh (Ty (s :-> t)) = kripkefy (Ty s) $ \ s -> kripkefy (Ty t) $ \ t ->
UnArrAye s t
unArrEh _ = UnArrNaw
pattern (:-&>) :: Kripke Tyme i -> Kripke Tyme i -> Tyme i
pattern s :-&> t <- (unArrEh -> UnArrAye s t)
(-&>) :: All (Tyme -:> Tyme -:> Tyme)
Ty a -&> Ty b = Ty (a :-> b)
instance Timed Tyme where
step (Ty t) (r :/: x) = Ty (subst r x t)
subst :: Ty Z -> ExVar -> Ty n -> Ty n
subst r x = go where
go (E y) | x == y = closed r
go (s :-> t) = go s :-> go t
go t = t
data Sch (n :: N)
= T (Ty n)
| P (Sch (S n))
deriving Show
newtype Schime (t :: Time) = Sch (Sch Z) deriving Show
monotype :: All (Tyme -:> Schime)
monotype (Ty t) = Sch (T t)
dep :: ExVar -> Ty n -> Bool
dep x (E y) = x == y
dep x (s :-> t) = dep x s || dep x t
dep _ _ = False
instance Timed Schime where
step (Sch s) (r :/: x) = Sch (go s) where
go :: All (Sch -:> Sch)
go (T t) = T (subst r x t)
go (P s) = P (go s)
stan :: Sch (S Z) -> All (Tyme -:> Schime)
stan s (Ty r) = Sch (sub Zi s) where
sub :: Inx (S n) -> Sch (S n) -> Sch n
sub j (T t) = T (go t) where
go (s :-> t) = go s :-> go t
go (U i) = case thick j i of
Nothing -> closed r
Just i -> U i
go (E e) = E e
sub j (P p) = P (sub (Si j) p)
gen :: All (K ExVar -:> Schime -:> Schime)
gen (K e) (Sch s) = case go Zi s of (s', b) -> if b then Sch (P s') else Sch s
where
go :: Inx (S n) -> Sch n -> (Sch (S n), Bool)
go j (T t) = case euTy e j t of (t', b) -> (T t', b)
go j (P s) = case go (Si j) s of (s', b) -> (P s', b)
euTy :: ExVar -> Inx (S n) -> Ty n -> (Ty (S n), Bool)
euTy e j (E x) = if e == x then (U j, True) else (E x, False)
euTy _ j (U i) = (U (thin j i), False)
euTy e j (s :-> t) = case (euTy e j s, euTy e j t) of
((s, a), (t, b)) -> (s :-> t, a || b)
------------------------------------------------------------------------------
-- Free Timed monads
------------------------------------------------------------------------------
data TiMo
(c :: (Time -> Type) -> Time -> Type)
(v :: Time -> Type)
(s :: Time)
:: Type where
RetNow :: v s -> TiMo c v s
Call :: forall c r v s
. c r s
-> All ((&>) s -:> r -:> TiMo c v)
-> TiMo c v s
instance (forall r. Timed (c r), Timed v) => Timed (TiMo c v) where
RetNow v &> u = RetNow (v &> u)
Call c k &> u = Call (c &> u) $ \ w r -> k (u &> w) r
step (RetNow v) u = RetNow (step v u)
step (Call c k) u = Call (step c u) $ \ w r -> k ((Now :< u) &> w) r
instance MoTime (TiMo c) where
retNow = RetNow
(>>>=) :: forall c f g s. (Timed f, Timed g)
=> TiMo c f s
-> (forall t. (SegTo t, SegFrom t ~ s) =>
Kripke f t -> TiMo c g t)
-> TiMo c g s
RetNow v >>>= k = leap (now v) (k (kripke v))
Call c j >>>= k = Call c $ \ u r ->
j u r >>>= jump u seg
where
jump :: forall t t'. s &> t -> t &> t'
-> Kripke f t' -> TiMo c g t'
jump u w f = leap (u &> w) (k f)
op :: Timed r => c r s -> TiMo c r s
op c = Call c $ \ _ r -> RetNow r
leap :: forall s t x
. s &> t
-> ((SegTo t, SegFrom t ~ s) => x)
-> x
leap u k = case mkStep u of
Dict -> k
------------------------------------------------------------------------------
-- Seek not to know how the sausage is cooked
------------------------------------------------------------------------------
data Dict (c :: Constraint) :: Type where
Dict :: c => Dict c
data FakeLe s t = FakeLe (s &> t)
mkStep :: forall s t. s &> t -> Dict (SegTo t, (SegFrom t ~ s))
mkStep u = case (foo, baz) of
(Dict, Dict) -> Dict
where
foo :: Dict (SegTo t)
foo = unsafeCoerce (FakeLe u)
bar :: Dict (s ~ s)
bar = Dict
baz :: Dict (SegFrom t ~ s)
baz = unsafeCoerce bar
------------------------------------------------------------------------------
-- Effects
------------------------------------------------------------------------------
data W (r :: Time -> Type)(i :: Time) :: Type where
Next -- next fresh number, please (handled by nonce)
:: W (K Int) i
VSch -- look up the program variable (handled by decl)...
:: ProgVar -- ...with this name, and...
-> W Schime i -- tell me its type scheme
Inst -- instantiate (handled by bloc)...
:: Schime i -- ...this type scheme...
-> W Tyme i -- ...to this type (by guessing the type parameters)
Make -- make a definition (handled by guessing)...
:: [ExVar] -- ...with these dependencies to be extruded...
-> Tyme i -- ...of this type...
-> ExVar -- ...for this variable
-> W (K ()) i
Barf :: W f i
instance Timed (W r) where
step Next u = Next
step (VSch x) u = VSch x
step (Inst s) u = Inst (step s u)
step (Make ds t x) u = Make ds (step t u) x
step Barf u = Barf
------------------------------------------------------------------------------
-- Handlers
------------------------------------------------------------------------------
-- handle Next...
nonce :: Timed v => Int -> All (TiMo W v -:> TiMo W v)
-- ...by giving the next number and rehandling the continuation with increment
nonce n (Call Next k) = nonce (n + 1) $ k Now (K n)
-- forward everything else
nonce n (RetNow v) = RetNow v
nonce n (Call c k) = Call c $ \ u r -> nonce n $ k u r
-- pick a fresh existential variable using Next
fresh :: String -> TiMo W (K ExVar) i
fresh x =
op Next >>>= \ i ->
retNow (kmap (x,) i)
type ProgVar = String
-- handle VSch...
decl :: Timed v => ProgVar -> All (Schime -:> TiMo W v -:> TiMo W v)
-- ...by giving the scheme if we're looking up this decl
decl x s (Call (VSch y) k) | x == y = decl x s $ k Now s
-- forward everything else, but...
decl x s (RetNow v) = RetNow v
-- ...be sure to update the scheme in the light of progress
decl x s (Call c k) = Call c $ \ u r -> decl x (s &> u) $ k u r
-- handle Inst requests
-- (this is fatsemi in Gundry-McBride-McKinna
-- , doorstop in Krishnaswami-Dunfield)
bloc :: All (TiMo W Tyme -:> TiMo W Schime)
-- if we're instantiating a monotype, we're done
bloc (Call (Inst (Sch (T t))) k) = bloc $ k Now (Ty t)
-- if we're instantiating a polytime, we're inventing a fresh existential var
-- and guessing it
bloc (Call (Inst (Sch (P s))) k) =
fresh "x" >>>= \ e ->
guessing e $ bloc $
op (Inst (stan s (tiE e))) >>>= \ t ->
k lesson t
-- retNow wraps the type
bloc (RetNow (Ty t)) = RetNow (Sch (T t))
-- otherwise forward
bloc (Call c k) = Call c $ \ u r -> bloc $ k u r
-- handle Make, but also do generalisation (note we're computing type schemes)
guessing :: All (K ExVar -:> TiMo W Schime -:> TiMo W Schime)
-- when Make shows up, we have four possibilities
guessing (K e) (Call c@(Make ds (Ty t) x) k) = case (e == x, dep e t) of
-- (is it me?, do I occur in the definiens)
(True, True) -- it's me and the occur check failed; oh noes!
-> op Barf
(True, False) -- it's me, so extrude my dependencies and substitute me!
-> foldr (guessing . K) (k (Now :< (t :/: x)) (K ())) ds
(False, True) -- it's not me, but I occur, so extrude me!
-> Call (Make (e : ds) (Ty t) x) k
(False, False) -- it's nothing to do with me, so leave alone!
-> Call c $ \ u r -> guessing (K e) $ k u r
-- nobody made me; I could be anything; pawn becomes queen!
guessing e (RetNow s) = RetNow (gen e s)
-- forward the rest (the update is a no-op)
guessing (K e) (Call c k) = Call c $ \ u r -> guessing (K e) $ k u r
------------------------------------------------------------------------------
-- Run
------------------------------------------------------------------------------
run :: TiMo W f i -> Maybe (Some f)
run (RetNow r) = Just (Some r)
run _ = Nothing
------------------------------------------------------------------------------
-- Core ML
------------------------------------------------------------------------------
data Tm
= V ProgVar -- program variables
| ProgVar :=> Tm -- lambda
| Tm :$ Tm -- application
| (ProgVar, Tm) :/ Tm -- let
deriving Show
infixr 3 :/
infixr 4 :=>
infixl 5 :$
-- ensure that a type is a function type, giving back source and target
funTy :: All (Tyme -:> TiMo W (Tyme :* Tyme))
-- if it's already a function type, crack on!
funTy (Ty (s :-> t)) = retNow (Ty s :* Ty t)
-- otherwise, invent a function type and constrain
funTy u = kripkefy u $ \ u ->
op (Inst (Sch (P (P (T (U (Si Zi) :-> U Zi)))))) >>>= \ f ->
unify u f >>>= \ _ ->
funTy f
-- guess a type
guess :: All (TiMo W Tyme)
guess = op (Inst (Sch (P (T (U Zi)))))
-- make types the same!
unify :: All (Tyme -:> Tyme -:> TiMo W (K ()))
-- if they're already the same, we're done
-- (note that catches trivial occur check failures, leaving only bad ones)
unify a b | a == b = retNow (K ())
-- rigid-rigid decomposition
unify (s0 :-&> t0) (s1 :-&> t1) = unify s0 s1 >>> unify t0 t1
-- flex problem? demand a definition!
unify (Ty (E e)) t = op (Make [] t e)
unify t (Ty (E e)) = op (Make [] t e)
-- anything else is hopeless
unify _ _ = op Barf
infer :: Tm -> All (TiMo W Tyme)
infer (V x) =
op (VSch x) >>>= \ s -> -- look up the declaration
op (Inst s) -- instantiate it
infer (x :=> b) =
guess >>>= \ s -> -- guess the domain
decl x (monotype s) (infer b) >>>= \ t -> -- declare x monomorphically
retNow (s -&> t) -- assemble the function type
infer (f :$ a) =
infer f >>>= \ ft -> -- infer the function's type
infer a >>>= \ at -> -- infer the argument's type
funTy ft >>>= \ st -> -- see the function's type as a function type
split st $ \ s t -> -- split into domain and codomain
unify at s >>> -- unify argument's type with domain
retNow t -- give back the codomain
infer ((x, d) :/ b) =
bloc (infer d) >>>= \ s -> -- get a type scheme for the definiens
decl x s (infer b) -- declare the definiendum and infer the body
------------------------------------------------------------------------------
-- Entry point
------------------------------------------------------------------------------
whatIs :: Tm -> Maybe (Sch Z)
whatIs t = case run . nonce 0 . bloc $ infer t of
Just (Some (Sch s)) -> Just s
_ -> Nothing
skk :: Maybe (Sch Z)
skk = whatIs $
("s", "f" :=> "a" :=> "g" :=> V "f" :$ V "g" :$ (V "a" :$ V "g")) :/
("k", "x" :=> "g" :=> V "x") :/
V "s" :$ V "k" :$ V "k"