-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathInduction.agda
92 lines (79 loc) · 2.63 KB
/
Induction.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
module Induction where
data Zero : Set where
record One : Set where constructor <>
data Two : Set where ff tt : Two
record _><_ (S : Set)(T : S -> Set) : Set where
constructor _,_
field
fst : S
snd : T fst
open _><_
record IxCon (I : Set) : Set1 where
constructor _<!_/_
field
Shape : I -> Set
Position : (i : I) -> Shape i -> Set
offspring : (i : I)(s : Shape i)(p : Position i s) -> I
_$_ : (I -> Set) -> (I -> Set)
_$_ X i = Shape i >< \ s -> ((p : Position i s) -> X (offspring i s p))
_$$_ : forall {X Y : I -> Set}
-> (forall {i} -> X i -> Y i)
-> forall {i} -> _$_ X i -> _$_ Y i
_$$_ f (s , k) = s , \ p -> f (k p)
open IxCon
module _ {I : Set}(F : IxCon I) where
data Mu (i : I) : Set where
con : (F $ Mu) i -> Mu i
iterate : forall {X : I -> Set}
-> (forall {i} -> (F $ X) i -> X i)
-> forall {i} -> Mu i -> X i
iterate alg (con (s , k)) = alg (s , \ p -> iterate alg (k p))
-- iterate alg (con fr) = alg ((F $$ iterate alg) fr)
_^ : IxCon (I >< Mu)
Shape _^ _ = One
Position _^ (i , con (s , k)) <> = Position F i s
offspring _^ (i , con (s , k)) <> p = offspring F i s p , k p
inductivity : forall {I}{F : IxCon I}
-> forall {i}(x : Mu F i) -> Mu (F ^) (i , x)
inductivity (con (s , k)) = con (<> , \ p -> inductivity (k p))
induction : forall {I}{F : IxCon I}
-> (P : forall i -> Mu F i -> Set)
-> (forall {i}(s : Shape F i)
(k : (p : Position F i s) -> Mu F (offspring F i s p))
(h : (p : Position F i s) -> P (offspring F i s p) (k p))
-> P i (con (s , k)))
-> forall {i}(x : Mu F i) -> P i x
induction {F = F} P m x =
iterate (F ^) {X = \ (i , x) -> P i x}
(\ { {(i , con (s , k))} (<> , h) -> m s k h})
(inductivity x)
NAT : IxCon One
Shape NAT <> = Two
Position NAT <> ff = Zero
Position NAT <> tt = One
offspring NAT <> tt <> = <>
Nat = Mu NAT <>
ze : Nat
ze = con (ff , \ ())
su : Nat -> Nat
su n = con (tt , \ (<>) -> n)
_+_ : Nat -> Nat -> Nat
_+_ x y = iterate NAT (\ { (ff , _) -> y ; (tt , k) -> su (k <>) }) x
data _~_ {X : Set}(x : X) : X -> Set where
r~ : x ~ x
postulate
ext : forall {S : Set}{T : S -> Set}{f g : (s : S) -> T s}
-> ((s : S) -> f s ~ g s)
-> f ~ g
!~ : forall {X}(x : X) -> x ~ x
!~ x = r~
_~$~_ : forall {S T : Set}
{f g : S -> T} -> f ~ g ->
{x y : S} -> x ~ y ->
f x ~ g y
r~ ~$~ r~ = r~
_+ze : (x : Nat) -> (x + ze) ~ x
x +ze = induction (\ _ x -> (x + ze) ~ x)
(\ { ff k h -> !~ con ~$~ (!~ (ff ,_) ~$~ ext \ () )
; tt k h -> !~ con ~$~ (!~ (tt ,_) ~$~ ext \ _ -> h <>) })
x