-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathKanGo.hs
799 lines (688 loc) · 27 KB
/
KanGo.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
{-# LANGUAGE DeriveFunctor, DeriveFoldable, DeriveTraversable,
GADTs, DataKinds, KindSignatures, TypeOperators,
TypeFamilies, TupleSections, PolyKinds, RankNTypes,
MultiParamTypeClasses, FlexibleInstances, ScopedTypeVariables,
StandaloneDeriving, FlexibleContexts, UndecidableInstances #-}
module KanGo where
import Control.Monad
import Control.Monad.Identity
import Control.Applicative
import Data.Maybe
data SC -- syntactic categories
= TM -- terms (checkable)
| EL -- eliminations (synthable)
| PT -- points
data CX -- contexts expose the syntactic categories of bound vars
= C0
| CX :\ SC
data Var :: CX -> SC -> * where -- de Bruijn indices for bound vars
V0 :: Var (g :\ s) s
VS :: Var g t -> Var (g :\ s) t
deriving instance Eq (Var g s)
data Syn :: CX -> SC -> * where
I :: Bit -> Syn g PT
Mux :: Syn g PT -> Syn g PT -> Syn g PT -> Syn g PT
Type :: Syn g TM
B :: Quant -> Syn g TM -> Bnd g EL -> Syn g TM
L :: Bnd g EL -> Syn g TM
(:&) :: Syn g TM -> Syn g TM -> Syn g TM
(:-:) :: Syn g TM -> Syn g TM -> Syn g TM
Conn :: Syn g TM -> Triple (Syn g TM) -> Syn g TM -> Syn g TM
Path :: Bnd g PT -> Syn g TM
KanT :: KAN (Syn g) -> Syn g TM
Inter :: INTERPOL (Syn g) -> Syn g TM
E :: Syn g EL -> Syn g TM
V :: Var g c -> Syn g c
P :: FV c -> Syn g c
(:::) :: Syn g TM -> Syn g TM -> Syn g EL
(:$) :: Syn g EL -> Syn g TM -> Syn g EL
(:.) :: Syn g EL -> Syn g PT -> Syn g EL
(:@) :: Syn g EL -> Bit -> Syn g EL
(:^) :: Syn g TM -> Triple (Syn g TM) -> Syn g EL
KanV :: Bit -> KAN (Syn g) -> Syn g TM -> Syn g EL
InterV :: Bit -> INTERPOL (Syn g) -> Syn g TM -> Syn g EL
deriving instance Eq (Syn g b)
data Bnd :: CX -> SC -> * where
R :: Nom -> Syn (g :\ b) TM -> Bnd g b -- relevant
K :: Syn g TM -> Bnd g b -- konstant
deriving Eq
newtype Nom = Nom {nom :: String}
instance Show Nom where show = nom
instance Eq Nom where _ == _ = True
data Quant = Pi | Sg deriving Eq
instance Show Quant where
show Pi = "->"
show Sg = "*"
data Bit = B0 | B1 deriving Eq -- I probably use these for too much
instance Show Bit where
show B0 = "0"
show B1 = "1"
data Pair x = Pr {
thing0 :: x ,
thing1 :: x }
deriving (Functor, Foldable, Traversable, Eq)
thing :: Bit -> Pair x -> x
thing B0 = thing0
thing B1 = thing1
data Triple x = Tr {
point0 :: x ,
path01 :: x ,
point1 :: x }
deriving (Functor, Foldable, Traversable, Eq)
-- to be used for two things joined by a path in the middle
point :: Bit -> Triple x -> x
point B0 = point0
point B1 = point1
data KAN f = KAN {
side0 :: Triple (f TM) ,
side1 :: Triple (f TM) ,
base :: f TM ,
vert :: f PT ,
horiz :: f PT }
deriving instance Eq (KAN (Syn g))
side :: Bit -> KAN f -> Triple (f TM)
side B0 = side0
side B1 = side1
data INTERPOL f = INTERPOL {
types :: Pair (f TM) , -- S T
xports :: Pair (f TM) , -- f : S -> T g : T -> S
rtrips :: Pair (f TM) , -- p : (s : S) -> f (g s) = s q : (t : T) -> g (f t) = t
triang :: Pair (f TM) , -- (s : S) -> q (f s) = \ i -> g (p s i)
coord :: f PT } -- (t : T) -> p (g t) = \ i -> f (q t i)
deriving instance Eq (INTERPOL (Syn g))
class Kit (t :: CX -> SC -> *) where
vze :: t (g :\ b) b
tout :: t g b -> Syn g b
wk :: t g b -> t (g :\ c) b
instance Kit Var where
vze = V0
tout = V
wk = VS
instance Kit Syn where
vze = V V0
tout = id
wk = ren VS
act :: (Applicative f, Kit t) => (forall b. Var g b -> f (t d b)) ->
Syn g b -> f (Syn d b)
act f (I b) = pure (I b)
act f (Mux r s t) = Mux <$> act f r <*> act f s <*> act f t
act f Type = pure Type
act f (B q s t) = B q <$> act f s <*> bact f t
act f (L t) = L <$> bact f t
act f (s :& t) = (:&) <$> act f s <*> act f t
act f (s :-: t) = (:-:) <$> act f s <*> act f t
act f (Conn s q t) = Conn <$> act f s <*> traverse (act f) q <*> act f t
act f (Path t) = Path <$> bact f t
act f (KanT k) = KanT <$> kact f k
act f (Inter i) = Inter <$> iact f i
act f (E e) = E <$> act f e
act f (V i) = tout <$> f i
act f (P x) = pure (P x)
act f (g :$ s) = (:$) <$> act f g <*> act f s
act f (g :. p) = (:.) <$> act f g <*> act f p
act f (g :@ b) = (:@) <$> act f g <*> pure b
act f (g :^ q) = (:^) <$> act f g <*> traverse (act f) q
act f (KanV b k v) = KanV b <$> kact f k <*> act f v
act f (InterV b i v) = InterV b <$> iact f i <*> act f v
kact :: (Applicative f, Kit t) => (forall b. Var g b -> f (t d b)) ->
KAN (Syn g) -> f (KAN (Syn d))
kact f (KAN s0 s1 b v h) =
KAN <$> traverse (act f) s0 <*> traverse (act f) s1 <*> act f b
<*> act f v <*> act f h
iact :: (Applicative f, Kit t) => (forall b. Var g b -> f (t d b)) ->
INTERPOL (Syn g) -> f (INTERPOL (Syn d))
iact f (INTERPOL st fg pq hk i) =
INTERPOL <$> traverse (act f) st <*> traverse (act f) fg
<*> traverse (act f) pq <*> traverse (act f) hk
<*> act f i
bact :: forall f t g d c. (Applicative f, Kit t) =>
(forall b. Var g b -> f (t d b)) ->
Bnd g c -> f (Bnd d c)
bact f (R x t) = R x <$> act g t where
g :: forall b. Var (g :\ c) b -> f (t (d :\ c) b)
g V0 = pure vze
g (VS i) = wk <$> f i
bact f (K t) = K <$> act f t
ren :: (forall b. Var g b -> Var d b) -> Syn g b -> Syn d b
ren f = runIdentity . act (Identity . f)
dep :: Bnd g b -> Either (Syn g TM) (Syn (g :\ b) TM)
dep (K t) = Left t
dep (R x t) = case act str t of
Just t -> Left t
Nothing -> Right t
where
str :: Var (g :\ b) c -> Maybe (Var g c)
str V0 = Nothing
str (VS i) = Just i
bnd :: String -> Syn (g :\ b) TM -> Bnd g b
bnd x t = case dep b of
Left t -> K t
Right _ -> b
where b = R (Nom x) t
-- could add thickening?
data Sem :: SC -> * where
VI :: Bit -> Sem PT
VMux :: FV PT -> Sem PT -> Sem PT -> Sem PT
VType :: Sem TM
VB :: Quant -> Sem TM -> Clo EL -> Sem TM
VL :: Clo EL -> Sem TM
(::&) :: Sem TM -> Sem TM -> Sem TM
(::-:) :: Sem TM -> Sem TM -> Sem TM
VConn :: Sem TM -> Triple (Sem TM) -> Sem TM -> Sem TM
VPath :: Clo PT -> Sem TM
VKanT :: KAN Sem -> Sem TM
VInter :: INTERPOL Sem -> Sem TM
N :: Sem EL -> Sem TM
X :: FV EL -> Sem EL
(::$) :: Sem EL -> Sem TM -> Sem EL
(::.) :: Sem EL -> Sem PT -> Sem EL
(::@) :: Sem EL -> Bit -> Sem EL
(::^) :: Sem TM -> Triple (Sem TM) -> Sem EL
VKanV :: Bit -> KAN Sem -> Sem TM -> Sem EL
VInterV :: Bit -> INTERPOL Sem -> Sem TM -> Sem EL
data Env :: CX -> * where
E0 :: Env C0
(:<) :: Env g -> Val b -> Env (g :\ b)
data Clo :: SC -> * where
VR :: Env g -> Nom -> Syn (g :\ b) TM -> Clo b -- relevant
VK :: Sem TM -> Clo b -- konstant
data FV :: SC -> * where
Dim :: Int -> Nom -> FV PT
Par :: Int -> Sem TM -> Nom -> FV EL
nomC :: Clo b -> String
nomC (VR _ x _) = nom x
nomC _ = "x"
-- Semantically, this is what we expect to get when
-- we eval whatever it is.
type family Val (c :: SC) :: * where
Val PT = Sem PT
Val EL = (Sem TM, Sem TM) -- (val, type)
Val TM = Sem TM
-- semantically, everything needs a name supply;
-- we work in (Int ->)
stan :: Clo b -> Val b -> Int -> Val TM
stan (VR g _ b) v = eval (g :< v) b
stan (VK t) _ = pure t
instance Ord (FV PT) where
compare (Dim i _) (Dim j _) = compare i j
instance Eq (FV c) where
Dim i _ == Dim j _ = i == j
Par i _ _ == Par j _ _ = i == j
dim :: FV PT -> Val PT
dim i = VMux i (VI B0) (VI B1)
eval :: Env g -> Syn g b -> Int -> Val b
eval _ (I b) = pure (VI b)
eval g (Mux c p0 p1) = mux <$> eval g c <*> eval g p0 <*> eval g p1
eval _ Type = pure VType
eval g (B q s t) = VB q <$> eval g s <*> clo g t
eval g (L b) = VL <$> clo g b
eval g (s :& t) = (::&) <$> eval g s <*> eval g t
eval g (s :-: t) = (::-:) <$> eval g s <*> eval g t
eval g (Conn s q t) = VConn <$> eval g s <*> traverse (eval g) q <*> eval g t
eval g (Path b) = VPath <$> clo g b
eval g (KanT k) = kan =<< keval g k
eval g (Inter i) = inter =<< ieval g i
eval g (E e) = fst <$> eval g e
eval g (V i) = pure (proj g i)
eval _ (P i@(Dim _ _)) = pure (dim i)
eval _ (P x@(Par i t _)) = pure (N (X x), t)
eval g (t ::: tT) = (,) <$> eval g t <*> eval g tT
eval g (f :$ s) = join (apf <$> eval g f <*> eval g s)
eval g (f :. p) = do
qQ@(vq, vQ) <- eval g f
vp <- eval g p
case vQ of
vS ::-: vT -> (, VType) <$> apa (Tr vS vq vT) vp
VConn vs vP vt -> (,) <$> apa (Tr vs vq vt) vp <*> apa vP vp
eval g (e :@ b) = join (field b <$> eval g e)
eval g (r :^ q) = do
r <- eval g r
p <- traverse (eval g) q
(, point1 p) <$> transport r p
idFun :: Sem TM
idFun = VL (VR E0 (Nom "") (E (V V0)))
stretch :: Sem TM -> Triple (Sem TM)
stretch vx = Tr vx (VPath (VK vx)) vx
interDeg :: INTERPOL Sem -> Int -> Bool
interDeg (INTERPOL (Pr vS vT) (Pr vf vg) (Pr vp vq) (Pr vh vk) i) = do
pqT <- piTy "s" vS $ \ vs -> pure (VConn vs (stretch vS) vs)
pqF <- lam pqT "s" $ \ vs -> pure (VPath (VK vs))
hkT <- piTy "s" vS $ \ vs -> pure (VConn (VPath (VK vs))
(stretch (VConn vs (stretch vS) vs))
(VPath (VK vs)))
hkF <- lam hkT "s" $ \ vs -> pure (VPath (VK (VPath (VK vs))))
bs <- sequenceA
[ equal VType vS vT
, equal (vS ->> vS) vf idFun , equal (vS ->> vS) vg idFun
, equal pqT vp pqF , equal pqT vq pqF
, equal hkT vh hkF , equal hkT vk hkF
]
pure $ all id bs
inter :: INTERPOL Sem -> Int -> Sem TM
inter i@(INTERPOL st _ _ _ (VI b)) = pure $ thing b st
inter i = do
b <- interDeg i
pure $ if b then thing0 (types i) else VInter i
(->>) :: Sem TM -> Sem TM -> Sem TM
vS ->> vT = VB Pi vS (VK vT)
interV :: Bit {- B0 from point j to 0 (i.e., S); B1 from 0 to point j -} ->
INTERPOL Sem -> Sem TM -> Int -> Sem TM
interV du i@(INTERPOL st@(Pr vS vT) fg@(Pr vf vg) pq hk j) v = do
b <- interDeg i
if b then pure v else case (du, j) of
(_, VI B0) -> pure v -- we're already at S; up and down are both trivial
(B0, VI B1) -> fst <$> apf (vg, vT ->> vS) v
(B1, VI B1) -> fst <$> apf (vf, vS ->> vT) v
_ -> pure (N (VInterV du i v))
keval :: Env g -> KAN (Syn g) -> Int -> KAN Sem
keval g (KAN s0 s1 b v h) =
KAN <$> traverse (eval g) s0 <*> traverse (eval g) s1 <*> eval g b
<*> eval g v <*> eval g h
ieval :: Env g -> INTERPOL (Syn g) -> Int -> INTERPOL Sem
ieval g (INTERPOL st fg pq hk i) =
INTERPOL <$> traverse (eval g) st <*> traverse (eval g) fg
<*> traverse (eval g) pq <*> traverse (eval g) hk
<*> eval g i
piTy :: String -> Sem TM -> (Sem TM -> Int -> Sem TM) -> Int -> Sem TM
piTy n vS f = underEL vS $ \ x -> do
let vx = N (X x)
vT <- f vx
tT <- quote (Q0 :\\ x) VType vT
VB Pi vS <$> clo E0 (bnd n tT)
lam :: Sem TM -> String -> (Sem TM -> Int -> Sem TM) -> Int -> Sem TM
lam (VB Pi vS cT) n f = underEL vS $ \ x -> do
let vx = N (X x)
vt <- f vx
vT <- stan cT (vx, vS)
t <- quote (Q0 :\\ x) vT vt
VL <$> clo E0 (bnd n t)
path :: String -> (Sem PT -> Int -> Sem TM) -> Int -> Sem TM
path x p = underPT $ \ i -> do
vT <- p (dim i)
tT <- quote (Q0 :\\ i) VType vT
VPath <$> clo E0 (bnd x tT)
vpath :: Triple (Sem TM) -> String -> (Sem PT -> Int -> Sem TM) -> Int -> Sem TM
vpath vQ x p = underPT $ \ i -> do
vT <- apa vQ (dim i)
vt <- p (dim i)
t <- quote (Q0 :\\ i) vT vt
VPath <$> clo E0 (bnd x t)
segment :: Triple (Sem TM) -> Sem PT -> Sem PT -> Int -> Triple (Sem TM)
segment p i j = Tr <$> apa p i <*> path "k" (\ k -> apa p (mux k i j)) <*> apa p j
synpa :: Syn (C0 :\ PT) TM -> Int -> Sem TM
synpa b = eval E0 (Path (bnd "i" b))
transport :: Val TM -> Triple (Sem TM) -> Int -> Sem TM
transport vr (Tr _ (VPath (VK _)) _) = pure vr -- *obviously* degenerate
transport vr p = underPT $ \ h -> do
vZ <- apa p (dim h)
zZ <- quote (Q0 :\\ h) VType vZ -- obtain syntax of typical point
case dep (R (Nom "i") zZ) of
Left _ -> pure vr -- *detectably* degenerate
Right _ -> case (point0 p, zZ, point1 p) of
(vR@(VB Sg vS0 cT0), B Sg sS tT, VB Sg vS1 cT1) -> do
pS <- Tr vS0 <$> synpa sS <*> pure vS1
(vs0, _) <- field B0 (vr, vR)
let vs i = transport vs0 =<< segment pS (VI B0) i
vT i = do
cT <- clo (E0 :< i) tT
stan cT =<< ((,) <$> vs i <*> apa pS i)
(vt0, vT0) <- field B1 (vr, vR)
(::&) <$> vs (VI B1)
<*> (transport vt0 =<< (Tr vT0 <$> path "i" vT <*> vT (VI B1)))
(vR@(VB Pi vS0 cT0), B Pi sS tT, vU@(VB Pi vS1 cT1)) ->
lam vU (nomC cT1) $ \ vs1 -> do
pS <- Tr vS0 <$> synpa sS <*> pure vS1
let vs i = transport vs1 =<< segment pS (VI B1) i
vT i = do
cT <- clo (E0 :< i) tT
stan cT =<< ((,) <$> vs i <*> apa pS i)
(vt0, vT0) <- apf (vr, vR) =<< vs (VI B0)
transport vt0 =<< (Tr vT0 <$> path "i" vT <*> vT (VI B1))
(vS0 ::-: vT0, sS :-: tT, vS1 ::-: vT1) -> path "j" $ \ j -> do
vS <- synpa sS
vT <- synpa tT
kan (KAN { side0 = Tr vS0 vS vS1
, base = vr
, side1 = Tr vT0 vT vT1
, vert = VI B1
, horiz = j})
(VConn vs0 vQ0 vt0, Conn s qQ t, VConn vs1 vQ1 vt1) -> do
let vQ i = traverse (eval (E0 :< i)) qQ
path "j" $ \ j -> do
vp0 <- apa (Tr vs0 vr vt0) j
vQj <- path "i" $ \ i -> do
vQi <- vQ i
apa vQi j
transport vp0 =<< (Tr <$> apa vQ0 j <*> pure vQj <*> apa vQ1 j)
(_, KanT k@(KAN s0 s1 b v h), _) -> do -- faces may be degenerate...
vk0 <- keval (E0 :< VI B0) k -- ...so find them by instantiation
vk1 <- keval (E0 :< VI B1) k
vs0 <- kanV B0 vk0 vr -- down the left face...
let pB = VPath (VR E0 (Nom "i")
(E ((b ::: (point0 s0 :-: point0 s1)) :. h)))
-- ...across the base...
vs1 <- transport vs0 =<< (Tr <$> apa (kanB vk0) (horiz vk0)
<*> pure pB
<*> apa (kanB vk1) (horiz vk1))
kanV B1 vk1 vs1 -- ...and up the right face
(_, Inter i@(INTERPOL (Pr sS _) _ _ _ _), _) -> do
vi0 <- ieval (E0 :< VI B0) i
vi1 <- ieval (E0 :< VI B1) i
vs0 <- interV B0 vi0 vr -- down from interpolant to S0
pS <- Tr (thing0 (types vi0)) <$> synpa sS <*>
pure (thing0 (types vi1))
-- from S0 to S1
vs1 <- transport vs0 pS
interV B1 vi1 vs1 -- up from S1 to interpolant
_ -> pure (N (vr ::^ p))
kanB :: KAN Sem -> Triple (Sem TM)
kanB (KAN (Tr vS _ _) (Tr vT _ _) b _ _) = Tr vS b vT
-- trying to ship a value from a point in a Kan square
-- (B0) down to the base
-- (B1) or up from the base
-- must do same degeneracy tests as kan, to keep sync
kanV :: Bit -> KAN Sem -> Sem TM -> Int -> Sem TM
kanV _ k v | pteq (vert k) (VI B0) = pure v -- on the base already
kanV du k v = case horiz k of
VI b -> transport v =<< seg du (side b k) -- on one side or the other
_ -> do
b <- (&&) <$> degenerate (side0 k) <*> degenerate (side1 k)
pure $ if b then v else N (VKanV du k v)
where
seg B0 s = segment s (vert k) (VI B0)
seg B1 s = segment s (VI B0) (vert k)
degenerate :: Triple (Sem TM) -> Int -> Bool
degenerate path = underPT $ \ i -> do
vS <- apa path (dim i)
sS <- quote (Q0 :\\ i) VType vS
case bnd "i" sS of
K _ -> pure True
R _ _ -> pure False
kan :: KAN Sem -> Int -> Sem TM
kan k | pteq (vert k) (VI B0) = apa (kanB k) (horiz k) -- on the base?
kan k = case horiz k of
VI b -> apa (side b k) (vert k) -- one one side or the other
_ -> do -- so we're in the interior...if there is an interior
b <- (&&) <$> degenerate (side0 k) <*> degenerate (side1 k)
if b then apa (kanB k) (horiz k) else pure $ VKanT k
field :: Bit -> Val EL -> Int -> Val EL
field B0 (s ::& _, VB Sg sS _) = pure (s, sS)
field B0 (N e, VB Sg sS _) = pure (N (e ::@ B0), sS)
field B1 (s ::& t, VB Sg sS tT) = (t,) <$> stan tT (s, sS)
field B1 (N e, VB Sg sS tT) = (N (e ::@ B1),) <$> stan tT (N (e ::@ B0), sS)
apa :: Triple (Sem TM) -> Sem PT -> Int -> Sem TM
apa (Tr vS _ _) (VI B0) = pure vS
apa (Tr _ _ vT) (VI B1) = pure vT
apa (Tr _ (VPath b) _) i = stan b i
apa (Tr _ (N f) _) i = pure (N (f ::. i))
apf :: Val EL -> Val TM -> Int -> Val EL
apf (f, VB Pi sS tT) s =
let vs = (s, sS)
vT = stan tT vs
vt = case f of
VL b -> stan b vs
N f -> pure (N (f ::$ s))
in (,) <$> vt <*> vT
proj :: Env g -> Var g b -> Val b
proj (_ :< v) V0 = v
proj (g :< _) (VS i) = proj g i
clo :: Env g -> Bnd g b -> Int -> Clo b
clo g (R x b) = pure (VR g x b)
clo g (K t) = VK <$> eval g t
mux :: Sem PT -> Sem PT -> Sem PT -> Sem PT
mux (VI B0) p0 _ = p0
mux (VI B1) _ p1 = p1
mux (VMux i q0 q1) p0 p1 = vmux i (mux q0 p0 p1) (mux q1 p0 p1)
vmux :: FV PT -> Sem PT -> Sem PT -> Sem PT
vmux i p0 p1 | pteq p0 p1 = p0
vmux i (VMux j q0 q1) p1
| i == j = vmux i q0 p1
| i < j = vmux j (vmux i q0 p1) (vmux i q1 p1)
vmux i p0 (VMux j q0 q1)
| i == j = vmux i p0 q1
| i < j = vmux j (vmux i p0 q0) (vmux i p0 q1)
vmux i p0 p1 = VMux i p0 p1
pteq :: Sem PT -> Sem PT -> Bool
pteq (VI b) (VI c) = b == c
pteq (VMux i p0 p1) (VMux j q0 q1) =
i == j && pteq p0 q0 && pteq p1 q1
pteq _ _ = False
data QJ :: CX -> * where
Q0 :: QJ C0
(:\\) :: QJ g -> FV b -> QJ (g :\ b)
data (:~:) :: t -> t -> * where
Refl :: t :~: t
fveq :: FV a -> FV b -> Maybe (a :~: b)
fveq (Dim i _) (Dim j _) | i == j = Just Refl
fveq (Par i _ _) (Par j _ _) | i == j = Just Refl
fveq _ _ = Nothing
dbFV :: QJ g -> FV b -> Maybe (Var g b)
dbFV Q0 _ = Nothing
dbFV (q :\\ x) y = case fveq x y of
Just Refl -> pure V0
_ -> VS <$> dbFV q y
equal :: Sem TM -> Sem TM -> Sem TM -> Int -> Bool
equal vT vt0 vt1 = do
t0 <- quote Q0 vT vt0
t1 <- quote Q0 vT vt1
pure (t0 == t1)
underEL :: Sem TM -> (FV EL -> Int -> x) -> Int -> x
underEL vS k i = k (Par i vS (Nom "")) (i + 1)
underPT :: (FV PT -> Int -> x) -> Int -> x
underPT k i = k (Dim i (Nom "")) (i + 1)
quote :: QJ g -> Sem TM -> Sem TM -> Int -> Syn g TM
quote q VType VType = pure Type
quote q VType (VB z vS cT) = B z <$> quote q VType vS <*>
(underEL vS $ \ x -> do
vx <- eval E0 (P x)
vT <- stan cT vx
bnd (nomC cT) <$> quote (q :\\ x) VType vT)
quote q VType (vS ::-: vT) = (:-:) <$> quote q VType vS <*> quote q VType vT
quote q VType (VConn vs vP vt) =
Conn <$> quote q (point0 vP) vs <*> quotr q vP <*> quote q (point1 vP) vt
quote q VType (VKanT k) = KanT <$> quoka q k
quote q VType (VInter i) = Inter <$> quoin q i
quote q vF@(VB Pi vS cT) vf = underEL vS $ \ x -> do
(vt, vT) <- apf (vf, vF) (N (X x))
let n = case vf of
VL (VR _ y _) -> nom y
_ -> nomC cT
L <$> (bnd n <$> quote (q :\\ x) vT vt)
quote q vP@(VB Sg vS cT) vp = do
(vs, vS) <- field B0 (vp, vP)
(vt, vT) <- field B1 (vp, vP)
(:&) <$> quote q vS vs <*> quote q vT vt
quote q (vS ::-: vT) vq = underPT $ \ i -> do
vS <- apa (Tr vS vq vT) =<< eval E0 (P i)
Path <$> (bnd "i" <$> quote (q :\\ i) VType vS)
quote q (VConn vs vQ vt) vq = underPT $ \ i -> do
vi <- eval E0 (P i)
vP <- apa vQ vi
vp <- apa (Tr vs vq vt) vi
Path <$> (bnd "i" <$> quote (q :\\ i) vP vp)
quote q _ (N e) = E <$> (fst <$> quoel q e)
quote q t _ = \ i -> error $ "YUK! " ++ display B1 q (quote q VType t i)
quoka :: QJ g -> KAN Sem -> Int -> KAN (Syn g)
quoka q (KAN s0@(Tr vS0 _ _) s1@(Tr vS1 _ _) b v h) =
KAN <$> quotr q s0 <*> quotr q s1 <*> quote q (vS0 ::-: vS1) b
<*> pure (quopt q v) <*> pure (quopt q h)
hConn :: Sem TM -> Sem TM -> Sem TM -> Sem TM
hConn vT vt0 vt1 = VConn vt0 (stretch vT) vt1
quoin :: QJ g -> INTERPOL Sem -> Int -> INTERPOL (Syn g)
quoin q (INTERPOL (Pr vS vT) (Pr vf vg) (Pr vp vq) (Pr vh vk) vi) = do
let rf vs = fst <$> apf (vf, vS ->> vT) vs
rg vt = fst <$> apf (vg, vT ->> vS) vt
vpTy <- piTy "s" vS $ \ vs -> hConn vS <$> (rg =<< rf vs) <*> pure vs
vqTy <- piTy "t" vT $ \ vt -> hConn vT <$> (rf =<< rg vt) <*> pure vt
let rp vs = fst <$> apf (vp, vpTy) vs
rq vt = fst <$> apf (vq, vqTy) vt
vhTy <- piTy "s" vS $ \ vs ->
hConn <$> (hConn vT <$> (rf =<< (rg =<< rf vs)) <*> rf vs)
<*> (rq =<< rf vs)
<*> (vpath (stretch vT) "i" $ \ i -> do
z <- Tr <$> (rg =<< rf vs) <*> rp vs <*> pure vs
rf =<< apa z i)
vkTy <- piTy "st" vT $ \ vt ->
hConn <$> (hConn vS <$> (rg =<< (rf =<< rg vt)) <*> rg vt)
<*> (rp =<< rg vt)
<*> (vpath (stretch vS) "i" $ \ i -> do
z <- Tr <$> (rf =<< rg vt) <*> rq vt <*> pure vt
rg =<< apa z i)
INTERPOL <$> (Pr <$> quote q VType vS <*> quote q VType vT)
<*> (Pr <$> quote q (vS ->> vT) vf <*> quote q (vT ->> vS) vg)
<*> (Pr <$> quote q vpTy vp <*> quote q vqTy vq)
<*> (Pr <$> quote q vhTy vh <*> quote q vkTy vk)
<*> pure (quopt q vi)
quotr :: QJ g -> Triple (Sem TM) -> Int -> Triple (Syn g TM)
quotr q (Tr vS0 qS vS1) =
Tr <$> quote q VType vS0 <*> quote q (vS0 ::-: vS1) qS <*> quote q VType vS1
quoel :: QJ g -> Sem EL -> Int -> (Syn g EL, Sem TM)
quoel q (X x@(Par _ vT _)) = case dbFV q x of
Just i -> pure (V i, vT)
Nothing -> pure (P x, vT)
quoel q (vf ::$ vs) = do
(f, VB Pi vS cT) <- quoel q vf
(,) <$> ((f :$) <$> quote q vS vs)
<*> stan cT (vs, vS)
quoel q (vf ::. vp) = do
(f, vF) <- quoel q vf
case vF of
vS ::-: vT -> pure $ (f :. quopt q vp, VType)
VConn vs vP vt -> (f :. quopt q vp,) <$> apa vP vp
quoel q (ve ::@ b) = do
(e, vE@(VB Sg vS cT)) <- quoel q ve
(_, vT) <- field b (N ve, vE)
pure (e :@ b, vT)
quoel q (vr ::^ vp) =
(,) <$> ((:^) <$> quote q (point0 vp) vr <*> quotr q vp)
<*> pure (point1 vp)
quoel q (VKanV du vk vv) = do
k <- quoka q vk
vB <- apa (kanB vk) (horiz vk)
let (src, trg) = case du of
B0 -> (VKanT vk, vB) -- if we're quoting, vk is nondegenerate
B1 -> (vB, VKanT vk)
v <- quote q src vv
pure (KanV du k v, trg)
quoel q (VInterV du vi vv) = do
i <- quoin q vi
let vS = thing0 (types vi)
(src, trg) = case du of
B0 -> (VInter vi, vS)
B1 -> (vS, VInter vi)
v <- quote q src vv
pure (InterV du i v, trg)
quopt :: QJ g -> Sem PT -> Syn g PT
quopt q (VI b) = I b
quopt q (VMux x p0 p1) = Mux p (quopt q p0) (quopt q p1) where
p = case dbFV q x of
Just i -> V i
Nothing -> P x
display :: Bit {- B1 is big; B0 is small -} -> QJ g -> Syn g b -> String
display z q (Mux i (I B0) (I B1)) = display z q i
display z q (Mux i (I B1) (I B0)) = "!" ++ display z q i
display z q (E e) = display z q e
display z q (V i) = display z q (P (qproj q i))
display _ q (I b) = show b
display _ q Type = "Type"
display _ q (P (Dim _ i)) = show i
display _ q (P (Par _ _ x)) = show x
display B0 q t = "(" ++ display B1 q t ++ ")"
display _ q (Mux i j k) = concat
[display B0 q j, "<", display B1 q i, ">", display B0 q k]
display _ q (B b s (K t)) = concat
[display B0 q s, " ", show b, " ", display B1 q t]
display _ q (B b s (R x t)) = concat
["(", y, " : ", display B1 q s, ") ", show b, " " ,display B1 (glomE q y) t]
where y = freshen q (nom x)
display _ q (L (K t)) = "\\ _ -> " ++ display B1 q t
display _ q (L (R x t)) = concat ["\\ ", y, " -> ", display B1 (glomE q y) t]
where y = freshen q (nom x)
display _ q (s :& t) = display B0 q s ++ ", " ++ display B1 q t
display _ q (s :-: t) = display B0 q s ++ " - " ++ display B0 q t
display _ q (Conn s p t) = concat
[display B0 q s, " -{", displayT q p, "}- ", display B0 q t]
display _ q (Path (K _)) = "."
display _ q (Path (R x t)) = concat ["\\ ", y, " -> ", display B1 (glomP q y) t]
where y = freshen q (nom x)
display _ q (KanT k) = displayK q k
display _ q (Inter i) = displayI q i
display _ q (s ::: t) = display B0 q s ++ " : " ++ display B1 q t
display _ q (f :$ s) = display B1 q f ++ " " ++ display B0 q s
display _ q (f :. s) = display B1 q f ++ " " ++ display B0 q s
display _ q (f :@ b) = display B1 q f ++ " " ++ show b
display _ q (r :^ t) = concat [display B1 q r, " {", displayT q t, "}"]
display _ q (KanV du k v) = concat
[displayK q k, case du of {B0 -> "\\/ "; B1 -> "/\\ "}, display B1 q v]
display _ q (InterV du i v) = concat
[displayI q i, case du of {B0 -> "\\/ "; B1 -> "/\\ "}, display B1 q v]
displayT :: QJ g -> Triple (Syn g TM) -> String
displayT q (Tr _ (Path (K t)) _) = "\\ _ -> " ++ display B1 q t
displayT q (Tr _ st _) = display B1 q st
qproj :: QJ g -> Var g b -> FV b
qproj (_ :\\ v) V0 = v
qproj (q :\\ _) (VS i) = qproj q i
displayK :: QJ g -> KAN (Syn g) -> String
displayK q (KAN s0 s1 b v h) = concat
[ "[", displayT q s0, " | ", display B1 q b, " | ", displayT q s1, "]("
, display B1 q v, ", ", display B1 q h, ")"]
displayP :: QJ g -> Pair (Syn g TM) -> String
displayP q (Pr a b) = display B1 q a ++ " <-> " ++ display B1 q b
displayI :: QJ g -> INTERPOL (Syn g) -> String
displayI q (INTERPOL st fg pq hk i) = concat
[ "[", displayP q st, " | ", displayP q fg, " | ", displayP q pq
, " | ", displayP q hk, "](" , display B1 q i, ")"]
nameUsed :: QJ g -> String -> Bool
nameUsed Q0 _ = False
nameUsed (q :\\ Par _ _ (Nom x)) y = x == y || nameUsed q y
nameUsed (q :\\ Dim _ (Nom x)) y = x == y || nameUsed q y
freshen :: QJ g -> String -> String
freshen q x = if nameUsed q x then go 0 else x where
go i = if nameUsed q xi then go (i + 1) else xi where
xi = x ++ show i
glomE :: QJ g -> String -> QJ (g :\ EL)
glomE q x = q :\\ Par 0 VType (Nom x) -- yuk
glomP :: QJ g -> String -> QJ (g :\ PT)
glomP q x = q :\\ Dim 0 (Nom x) -- yuk
data Expt
= (String, Syn C0 TM) :/ (FV EL -> Expt)
| Go (Syn C0 EL)
instance Show Expt where
show e = go e 0 where
go (Go e) i = concat
[ "----------------------\n"
, display B1 Q0 e
, "\n -->\n"
, display B1 Q0 (t ::: tT)
] where
(vt, vT) = eval E0 e i
tT = quote Q0 VType vT i
t = quote Q0 vT vt i
go ((x, s) :/ e) i = concat
[ x, " : ", display B1 Q0 s, "\n"
, go (e (Par i (eval E0 s i) (Nom x))) (i + 1)
]
expt0 :: Expt
expt0 =
("X", Type) :/ \ xX -> ("Y", Type) :/ \ yY ->
("f", B Pi (E (P xX)) (K (E (P yY)))) :/ \ f ->
("X'", Type) :/ \ xX' -> ("Y'", Type) :/ \ yY' ->
("XQ", E (P xX) :-: E (P xX')) :/ \ xXQ ->
("YQ", E (P yY) :-: E (P yY')) :/ \ yYQ ->
Go
(E (P f) :^ Tr (B Pi (E (P xX)) (K (E (P yY))))
(Path (R (Nom "i") (B Pi (E (P xXQ :. V V0)) (K (E (P yYQ :. V V0))))))
(B Pi (E (P xX')) (K (E (P yY')))))
expt1 :: Expt
expt1 =
("X", Type) :/ \ xX -> ("Y", Type) :/ \ yY ->
("XY", E (P xX) :-: E (P yY)) :/ \ qXY ->
("x", E (P xX)) :/ \ x ->
Go $ Path (R (Nom "i") (E (E (P x) :^
Tr (E (P xX))
(Path (R (Nom "j") (E (P qXY :. Mux (V V0) (I B0) (V (VS V0))))))
(E (P qXY :. V V0)))))
:::
Conn (E (P x))
(Tr (E (P xX)) (E (P qXY)) (E (P yY)))
(E (E (P x) :^ Tr (E (P xX)) (E (P qXY)) (E (P yY))))