-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathNellist.agda
158 lines (134 loc) · 5.08 KB
/
Nellist.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
module Nellist where
-- see you B, raise you S
_-_ : forall {i j k}
{A : Set i}{B : A -> Set j}{C : (a : A) -> B a -> Set k}
(f : (a : A) -> B a)
(g : {a : A}(b : B a) -> C a b)
(a : A) -> C a (f a)
(f - g) a = g (f a)
infixl 10 _-_
data _~_ {X : Set}(x : X) : X -> Set where
r~ : x ~ x
{-# BUILTIN EQUALITY _~_ #-}
_[_>_ : forall {X} x {y z : X} -> x ~ y -> y ~ z -> x ~ z
x [ r~ > q = q
_<_]_ : forall {X} x {y z : X} -> y ~ x -> y ~ z -> x ~ z
x < r~ ] q = q
infixr 4 _[_>_ _<_]_
_[QED] : forall {X}(x : X) -> x ~ x
x [QED] = r~
infixr 5 _[QED]
_$~_ : forall {X Y}(f : X -> Y){x x' : X} -> x ~ x' -> f x ~ f x'
f $~ r~ = r~
resp2 : forall {X Y Z}(f : X -> Y -> Z){x x' : X} -> x ~ x' -> {y y' : Y} -> y ~ y' -> f x y ~ f x' y'
resp2 f r~ r~ = r~
record Nellist (X : Set) : Set
data Neltail (X : Set) : Set
record Nellist X where
inductive
constructor _,_
field
head : X
tail : Neltail X
infixr 10 _,_
open Nellist
data Neltail X where
[] : Neltail X
!_ : Nellist X -> Neltail X
infixr 10 !_
_++_ : forall {X} -> Nellist X -> Neltail X -> Nellist X
_++'_ : forall {X} -> Neltail X -> Neltail X -> Neltail X
(x , xs) ++ ys = x , (xs ++' ys)
[] ++' ys = ys
(! xs) ++' ys = ! (xs ++ ys)
map : forall {X Y} -> (X -> Y) -> Nellist X -> Nellist Y
mapt : forall {X Y} -> (X -> Y) -> Neltail X -> Neltail Y
map f (x , xs) = f x , mapt f xs
mapt f [] = []
mapt f (! xs) = ! map f xs
mapnelcat : forall {X Y}(f : X -> Y) xs ys ->
map f (xs ++ ys) ~ (map f xs ++ mapt f ys)
mapnelcat' : forall {X Y}(f : X -> Y) xs ys ->
mapt f (xs ++' ys) ~ (mapt f xs ++' mapt f ys)
mapnelcat f (x , xs) ys rewrite mapnelcat' f xs ys = r~
mapnelcat' f [] ys = r~
mapnelcat' f (! xs) ys rewrite mapnelcat f xs ys = r~
mapmap : forall {X Y Z}(f : X -> Y)(g : Y -> Z)(h : X -> Z)
(q : (x : X) -> g (f x) ~ h x)
(xs : Nellist X) ->
map g (map f xs) ~ map h xs
maptmapt : forall {X Y Z}(f : X -> Y)(g : Y -> Z)(h : X -> Z)
(q : (x : X) -> g (f x) ~ h x)
(xs : Neltail X) ->
mapt g (mapt f xs) ~ mapt h xs
mapmap f g h q (x , xs) rewrite q x | maptmapt f g h q xs = r~
maptmapt f g h q [] = r~
maptmapt f g h q (! xs) rewrite mapmap f g h q xs = r~
decorot : forall {X} -> Neltail X -> Neltail X -> Neltail (Nellist X)
decorot' : forall {X} -> Nellist X -> Neltail X -> Neltail (Nellist X)
decorot [] ys = []
decorot (! xs) ys = ! (xs ++ ys) , decorot' xs ys
decorot' (x , xs) ys = decorot xs (ys ++' (! x , []))
catnil : forall {X}(xs : Neltail X) -> (xs ++' []) ~ xs
catnil [] = r~
catnil (! x , xs) = !_ $~ ((x ,_) $~ catnil xs)
catasso : forall {X}(xs ys zs : Neltail X) -> ((xs ++' ys) ++' zs) ~ (xs ++' (ys ++' zs))
catasso [] ys zs = r~
catasso (! x , xs) ys zs = !_ $~ ((x ,_) $~ catasso xs ys zs)
lemma : forall {X}(xs ys zs : Neltail X) ->
decorot (xs ++' ys) zs ~
(decorot xs (ys ++' zs) ++' decorot ys (zs ++' xs))
lemma [] ys zs = decorot ys $~ (zs < catnil zs ] zs ++' [] [QED])
lemma (! x , xs) ys zs = !_ $~ resp2 _,_
((x ,_) $~ catasso xs ys zs)
(decorot (xs ++' ys) (zs ++' (! x , [])) [ lemma xs ys (zs ++' (! x , [])) >
(decorot xs (ys ++' (zs ++' (! x , []))) ++'
decorot ys ((zs ++' (! x , [])) ++' xs))
[ resp2 _++'_
(decorot xs $~ ((ys ++' (zs ++' (! x , [])))
< catasso ys zs (! x , []) ]
((ys ++' zs) ++' (! x , [])) [QED]))
(decorot ys $~ (((zs ++' (! x , [])) ++' xs)
[ catasso zs (! x , []) xs >
(zs ++' (! x , xs)) [QED])) >
(decorot xs ((ys ++' zs) ++' (! x , [])) ++'
decorot ys (zs ++' (! x , xs))) [QED])
deco : forall {X} -> Nellist X -> Nellist (Nellist X)
deco xs = xs , decorot (tail xs) (! head xs , [])
here : forall {X} -> Nellist X -> X
here = head
data Nat : Set where
ze : Nat
su : Nat -> Nat
{-# BUILTIN NATURAL Nat #-}
test = deco (1 , ! 2 , ! 3 , ! 4 , [])
check : deco test ~ map deco test
check = r~
law1 : forall {X}(xs : Nellist X) -> here (deco xs) ~ xs
law1 (x , xs) = r~
law2 : forall {X}(xs : Nellist X) -> map here (deco xs) ~ xs
law2' : forall {X} xs ys -> mapt (head{X}) (decorot xs ys) ~ xs
law2 (x , xs) = (x ,_) $~ law2' xs (! x , [])
law2' [] ys = r~
law2' (! x , xs) ys = !_ $~ ((x ,_) $~ law2' xs _)
law3 : forall {X}(xs : Nellist X) ->
deco (deco xs) ~ map deco (deco xs)
law3' : forall {X}(xs ys : Neltail X) ->
decorot (decorot xs ys) (decorot ys xs) ~
mapt deco (decorot xs ys)
law3 (x , xs) = (((x , xs) , decorot xs (! x , [])) ,_) $~ law3' xs (! x , [])
law3' [] ys = r~
law3' (! x , xs) ys = !_ $~ resp2 _,_
(((x , (xs ++' ys)) ,_) $~ (
(decorot xs (ys ++' (! x , [])) ++' decorot ys (! x , xs)) < lemma xs ys (! x , []) ]
decorot (xs ++' ys) (! x , []) [QED]))
(decorot (decorot xs (ys ++' (! x , [])))
(decorot ys (! x , xs) ++' (! (x , (xs ++' ys)) , []))
[ decorot (decorot xs (ys ++' (! x , []))) $~
((decorot ys (! x , xs) ++' (! (x , (xs ++' ys)) , []))
< lemma ys (! x , []) xs ]
decorot (ys ++' (! x , [])) xs [QED])
>
decorot (decorot xs (ys ++' (! x , []))) (decorot (ys ++' (! x , [])) xs)
[ law3' xs (ys ++' (! x , []))>
mapt deco (decorot xs (ys ++' (! x , []))) [QED])