-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathNormTree.hs
214 lines (178 loc) · 7.96 KB
/
NormTree.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
{-# LANGUAGE DataKinds, GADTs, KindSignatures, EmptyDataDecls, TypeFamilies,
PolyKinds, TypeOperators, PatternSynonyms #-}
module NormTree where
import Data.Traversable
import Data.Foldable
import Data.List
-- Natural numbers
data Nat = Z | S Nat
-- Singletons for natural numbers
data Natty :: Nat -> * where
Zy :: Natty Z
Sy :: Natty n -> Natty (S n)
-- Vectors
data Vec :: Nat -> * -> * where
Nil :: Vec Z x
(:.) :: x -> Vec n x -> Vec (S n) x
infixr 5 :.
-- The following definition is a Haskellization of the
-- "fixpoint of normal functors"
-- from https://github.com/pigworker/MetaprogAgda/raw/master/notes.pdf
-- section 1.9
-- General Single Sorted Trees Containing x things
data NormTree (sh :: Nat -> * -> *)(x :: *) :: * where
(:-) :: sh n x -> Vec n (NormTree sh x) -> NormTree sh x
-- the sh parameter determines the possible shapes of nodes
-- for each arity; we expect it to be a GADT or a data family
infix 4 :-
-- Here's how to say "the usual shapes, or some extra shapes,
-- but nobody else handles variables"
data ExpPlush (sh :: Nat -> *) :: Nat -> * -> * where
Var :: x -> ExpPlush sh Z x
Abs :: x -> ExpPlush sh (S Z) x
App :: ExpPlush sh (S (S Z)) x
Tup :: Natty n -> ExpPlush sh n x
Plus :: sh n -> ExpPlush sh n x -- see? no x in the shapes
-- You can say "no extra shapes"
data NoExt :: Nat -> * where
-- So, just the usual shapes, with strings for variables.
type Basic = NormTree (ExpPlush NoExt) String
-- The Church numeral for 2 looks like this.
church2 :: Basic
church2 = Abs "f" :- (Abs "x" :-
(App :-
(Var "f" :- Nil) :.
(App :- (Var "f" :- Nil) :. (Var "x" :- Nil) :. Nil) :.
Nil) :.
Nil) :. Nil
-- That's easy to clean with pattern synonyms.
-- Generic calculation, e.g. of free variables, is cheap.
freeVars :: Eq x => NormTree (ExpPlush sh) x -> [x]
freeVars (Var x :- Nil) = [x]
freeVars (Abs x :- t :. Nil) = delete x (freeVars t)
freeVars (_ :- ts) = foldr (union . freeVars) [] ts
-- But what if we're multisorted?
-- The above notes generalize normal functors to containers (chapter 3)
-- (by the way, you can sort of do containers in Haskell
-- https://pigworker.wordpress.com/2015/06/06/hasochistic-containers-a-first-attempt/
-- but I digress)
-- then to indexed (i.e., multisorted) containers (chapter 4)
-- which are closed under fixpoints (section 4.5)
-- The theory of containers (and indexed containers) is a depth well plumbed
-- by Neil Ghani and his friends (e.g. Michael Abbott, Thorsten Altenkirch,
-- me, Peter Morris, Peter Hancock). The papers tend to be quite categorical,
-- which is tricky if you don't have the relevant Babelfish in your ear.
-- DBLP Neil Ghani and search for "container" for the back issues of the
-- series.
-- This paper http://www.cs.nott.ac.uk/~psztxa/publ/jpartial.pdf
-- is about differentiability of containers, but has some *pictures*
-- which might help make sense of the categorical mumbo jumbo.
-- It's a big brain upload, but it has that "threshold concept" aspect
-- of changing the way you perceive what is common to inductive data
-- structures, and to systems of interactive programming (which is
-- Hancock's key insight). Almost like you *can* see the wood for the trees.
-- The "Cambridge notes" I linked to, above, give a more
-- (Agda-)programming-oriented presentation.
-- Brain-mangling homework exercises are available on request.
-- My plan here is to drag the indexed container fixpoint construction back
-- to the finitary case. We get multisorted normal functors.
-- A *number* of recursive position becomes
-- a *list of sorts* of recursive (and nonrecursive) positions,
-- So...
-- Sorts are either terminal (Left) or nonterminal (Right).
type family Case (f :: x -> *) (g :: y -> *) (z :: Either x y) :: * where
Case f g (Left x) = f x
Case f g (Right y) = g y
-- If we know how to build both, we can interpret a list of sorts.
data Kids (f :: x -> *)(g :: y -> *)(zs :: [Either x y]) :: * where
KNil :: Kids f g '[]
(:&) :: Case f g z -> Kids f g zs -> Kids f g (z ': zs)
infixr 5 :&
-- Now a shape is indexed by its own nonterminal sort and its kids' sorts.
data MutTree (sh :: y -> [Either x y] -> *)(v :: x -> *)(i :: y) where
(:=) :: sh i zs -> Kids v (MutTree sh v) zs -> MutTree sh v i
infixr 4 :=
-- Let's go wild!
data Side = Pat | Exp
data Sort = Tm Side | Def | List Sort
-- Sorts are closed under list formation, term sorts and definition sorts.
-- Term sorts are either pattern or expression.
-- Now we say what the syntax trees are by describing the shapes for
-- each sort. We have only one nonterminal sort -- identifiers.
--
-- But, by way of going wild, I've added
-- "mode" whose job is to specify labelling disciplines
-- (and I'm not fussy what kind mode is)
-- "more" whose job is to specify syntax extensions
-- I'm choosing only to label variable references, but ymmv.
-- Crucially, this labelling and extensibility discipline has
-- nothing to do with the idea of how to make trees.
-- Helpfully, "more" also takes "Mode", so extensions are free
-- to negotiate their own relationships with labelling disciplines.
data Syntax :: (mode -> Sort -> [Either () Sort] -> *) ->
mode -> Sort -> [Either () Sort] -> * where
SNil :: Syntax more mode (List s) '[]
SCons :: Syntax more mode (List s) '[Right s, Right (List s)]
SVar :: LabelVar mode -> Syntax more mode (Tm e) '[Left '()]
SCon :: Syntax more mode (Tm e) '[Left '(), Right (List (Tm e))]
SAbs :: Syntax more mode (Tm Exp) '[Left '(), Right (Tm Exp)]
SApp :: Syntax more mode (Tm Exp) '[Right (Tm Exp), Right (Tm Exp)]
SLet :: Syntax more mode (Tm Exp) '[Right (List Def), Right (Tm Exp)]
SEqn :: Syntax more mode Def
'[Left '(), Right (List (Tm Pat)), Right (Tm Exp)]
SMore :: more mode y zs -> Syntax more mode y zs
-- The empty extension.
data NoMore :: mode -> Sort -> [Either () Sort] -> * where
-- Two labelling disciplines.
data Mode = Plain | Fancy -- actually, Mode should be extensible
type family LabelVar (m :: mode) :: * where
LabelVar Plain = ()
LabelVar Fancy = Int
-- We need to interpret the nonterminal sort somehow.
data N (i :: ()) = N String
-- Here's an example with expressions, patterns and definitions
church4 :: MutTree (Syntax NoMore Fancy) N (Tm Exp)
church4 =
SLet := (SCons := (SEqn := N "church2"
:& (SCons := (SVar 1 := N "f" :& KNil)
:& (SCons := (SVar 2 := N "x" :& KNil)
:& (SNil := KNil)
:& KNil)
:& KNil)
:& (SApp := (SVar 1 := N "f" :& KNil)
:& (SApp := (SVar 1 := N "f" :& KNil)
:& (SVar 2 := N "x" :& KNil)
:& KNil)
:& KNil)
:& KNil)
:& (SNil := KNil)
:& KNil)
:& (SApp := (SVar 0 := N "church2" :& KNil)
:& (SVar 0 := N "church2" :& KNil)
:& KNil)
:& KNil
-- Now let me hide some cruft.
pattern PNil = SNil := KNil
pattern x :+ xs = SCons := x :& xs :& KNil
infixr 6 :+
pattern f :$ a = SApp := f :& a :& KNil
infixl 7 :$
pattern PV :: LabelVar mode -> String -> MutTree (Syntax NoMore mode) N (Tm e)
pattern PV i x = SVar i := N x :& KNil
church4' :: MutTree (Syntax NoMore Fancy) N (Tm Exp)
church4' =
SLet := ((SEqn := N "church2"
:& PV 1 "f" :+ PV 2 "x" :+ PNil
:& PV 1 "f" :$ (PV 1 "f" :$ PV 2 "x")
:& KNil)
:+ PNil)
:& PV 0 "church2" :$ PV 0 "church2"
:& KNil
-- Dull stuff
instance Traversable (Vec n) where
traverse f Nil = pure Nil
traverse f (x :. xs) = pure (:.) <*> f x <*> traverse f xs
instance Functor (Vec n) where
fmap = fmapDefault
instance Foldable (Vec n) where
foldMap = foldMapDefault