-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathDoublePendulumHamiltonian.py
314 lines (266 loc) · 12.8 KB
/
DoublePendulumHamiltonian.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import sympy as sp
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.ticker import FuncFormatter
from scipy.integrate import odeint, solve_ivp
import plotly.graph_objs as go
from plotly.subplots import make_subplots
from MathFunctions import *
p_theta_1 = sp.Function('p_theta_1')(t)
p_theta_2 = sp.Function('p_theta_2')(t)
def hamiltonian_first_order_system(model='simple'):
Heq1, Heq2, Heq3, Heq4 = hamiltonian_system(model)
LHS_FIRST = sp.Matrix([[Heq1.lhs], [Heq2.lhs], [Heq3.lhs], [Heq4.lhs]])
RHS_FIRST = sp.Matrix([[Heq1.rhs], [Heq2.rhs], [Heq3.rhs], [Heq4.rhs]])
MAT_EQ = sp.Eq(LHS_FIRST, RHS_FIRST)
return MAT_EQ, Heq1.rhs, Heq2.rhs, Heq3.rhs, Heq4.rhs
class DoublePendulumHamiltonian:
# Class variable for caching
_cache = {}
# Declare variables & constants
t = sp.Symbol("t")
l1, l2, m1, m2, M1, M2, g = sp.symbols('l1 l2 m1 m2 M1 M2 g', real=True, positive=True)
# Declare functions
theta1 = sp.Function('theta1')(t)
theta2 = sp.Function('theta2')(t)
p_theta_1 = sp.Function('p_theta_1')(t)
p_theta_2 = sp.Function('p_theta_2')(t)
@classmethod
def _compute_and_cache_equations(cls, model):
if model not in cls._cache:
cls._cache[model] = hamiltonian_first_order_system(model)
return cls._cache[model]
def __init__(self, parameters, initial_conditions, time_vector,
model='simple', integrator=solve_ivp, **integrator_args):
self.initial_conditions = np.deg2rad(initial_conditions)
self.time = np.linspace(time_vector[0], time_vector[1], time_vector[2])
self.parameters = parameters
self.model = model
# Get equations for the specified model
MAT_EQ, eqn1, eqn2, eqn3, eqn4 = self._compute_and_cache_equations(model)
self.matrix = MAT_EQ
# Substitute parameters into the equations
eq1_subst = eqn1.subs(parameters)
eq2_subst = eqn2.subs(parameters)
eq3_subst = eqn3.subs(parameters)
eq4_subst = eqn4.subs(parameters)
# Lambdify the equations after substitution
self.eqn1_func = sp.lambdify((theta1, theta2, p_theta_1, p_theta_2, t), eq1_subst, 'numpy')
self.eqn2_func = sp.lambdify((theta1, theta2, p_theta_1, p_theta_2, t), eq2_subst, 'numpy')
self.eqn3_func = sp.lambdify((theta1, theta2, p_theta_1, p_theta_2, t), eq3_subst, 'numpy')
self.eqn4_func = sp.lambdify((theta1, theta2, p_theta_1, p_theta_2, t), eq4_subst, 'numpy')
# Run the solver
self.sol = self._solve_ode(integrator, **integrator_args)
def _system(self, y, t):
th1, th2, p_th1, p_th2 = y
system = [
self.eqn1_func(th1, th2, p_th1, p_th2, t),
self.eqn2_func(th1, th2, p_th1, p_th2, t),
self.eqn3_func(th1, th2, p_th1, p_th2, t),
self.eqn4_func(th1, th2, p_th1, p_th2, t)
]
return system
def _solve_ode(self, integrator, **integrator_args):
"""
Solve the system of ODEs using the specified integrator.
Parameters:
- integrator: The integrator function to use. Default is scipy's solve_ivp.
- system: The system function defining the ODEs.
- **integrator_args: Additional arguments specific to the chosen integrator.
"""
if integrator == odeint:
sol = odeint(self._system, self.initial_conditions, self.time, **integrator_args)
elif integrator == solve_ivp:
t_span = (self.time[0], self.time[-1])
sol = solve_ivp(lambda t, y: self._system(y, t), t_span, self.initial_conditions,
t_eval=self.time, **integrator_args)
sol = sol.y.T # Transpose
else:
raise ValueError("Unsupported integrator")
return sol
def _calculate_positions(self):
# Unpack solution for theta1 and theta2
theta_1, theta_2 = self.sol[:, 0], self.sol[:, 1]
# Evaluate lengths of the pendulum arms using the provided parameter values
l_1 = float(self.parameters[l1])
l_2 = float(self.parameters[l2])
# Calculate the (x, y) positions of the first pendulum bob
x_1 = l_1 * np.sin(theta_1)
y_1 = -l_1 * np.cos(theta_1)
# Calculate the (x, y) positions of the second pendulum bob
x_2 = x_1 + l_2 * np.sin(theta_2)
y_2 = y_1 - l_2 * np.cos(theta_2)
return x_1, y_1, x_2, y_2
def time_graph(self):
plt.style.use('default') # Reset to the default style
fig, ax = plt.subplots()
# Plot settings to match the animation's appearance
ax.plot(self.time, np.rad2deg(self.sol[:, 0]), color='#F4762F', label="θ1", linewidth=2)
ax.plot(self.time, np.rad2deg(self.sol[:, 1]), color='#4EC5AE', label="θ2", linewidth=2)
# Set the labels, title, and grid
ax.set_xlabel('Time / seconds')
ax.set_ylabel('Angular displacement / degrees')
ax.grid(True, color='gray', linestyle='-', linewidth=0.5, alpha=0.7)
plt.legend(loc='best')
return fig
def phase_path(self):
plt.style.use('default') # Reset to the default style
fig, ax = plt.subplots()
# Plot settings to match the animation's appearance
ax.plot(np.rad2deg(self.sol[:, 0]), np.rad2deg(self.sol[:, 1]), color='#4410AD', label="Phase Path",
linewidth=2)
# Set the labels, title, and grid
ax.set_xlabel('θ1 / degrees')
ax.set_ylabel('θ2 / degrees')
ax.grid(True, color='gray', linestyle='-', linewidth=0.5, alpha=0.7)
plt.legend(loc='best')
return fig
def precompute_positions(self):
"""
Precomputes and stores the positions of both pendulum bobs for each time step.
This method calculates the (x, y) positions of the first and second pendulum bobs at each time step,
using the provided initial conditions and system parameters. The positions are stored in a NumPy array
as an instance attribute, which can be used for plotting and animation purposes, reducing the
computational load at rendering time.
"""
self.precomputed_positions = np.array(self._calculate_positions())
def animate_pendulum(self, fig_width=600, fig_height=600, trace=False, static=False, appearance='light'):
"""
Generates an animation for the double pendulum using precomputed positions.
Parameters:
fig_width (int): Default is 700 px
fig_height (int): Default is 700 px
trace (bool): If True, show the trace of the pendulum.
static (bool): disables extra interactivity
appearance (str): 'dark' for dark mode (default), 'light' for light mode.
Raises:
AttributeError: If `precompute_positions` has not been called before animation.
Returns:
A Plotly figure object containing the animation.
"""
# Check if precomputed_positions has been calculated
if not hasattr(self, 'precomputed_positions') or self.precomputed_positions is None:
raise AttributeError("Precomputed positions must be calculated before animating. "
"Please call 'precompute_positions' method first.")
x_1, y_1, x_2, y_2 = self.precomputed_positions
# Check appearance and set colors
if appearance == 'dark':
pendulum_color = 'rgba(255, 255, 255, 0.9)' # White with slight transparency for visibility
trace_color_theta1 = 'rgba(255, 165, 0, 0.6)' # Soft orange with transparency for trace of P1
trace_color_theta2 = 'rgba(0, 255, 0, 0.6)' # Soft green with transparency for trace of P2
background_color = 'rgb(17, 17, 17)' # Very dark (almost black) for the plot background
text_color = 'rgba(255, 255, 255, 0.9)' # White text color for better visibility in dark mode
grid_color = 'rgba(255, 255, 255, 0.3)' # Light grey for grid lines
elif appearance == 'light':
pendulum_color = '#4410AD' # Dark blue for better visibility against light background
trace_color_theta1 = '#F4762F' # Dark orange for a vivid contrast for trace of P1
trace_color_theta2 = '#4EC5AE' # Dark green for trace of P2
background_color = 'rgb(255, 255, 255)' # White for the plot background
text_color = 'rgb(0, 0, 0)' # Black text color for better visibility in light mode
grid_color = 'rgba(0, 0, 0, 0.1)' # Light black (gray) for grid lines, with transparency for subtlety
else:
print("Invalid appearance setting. Please choose 'dark' or 'light'.")
return None # Exit the function if invalid appearance
# Create figure with initial trace
fig = go.Figure(
data=[go.Scatter(
x=[0, x_1[0], x_2[0]],
y=[0, y_1[0], y_2[0]],
mode='lines+markers',
name='Pendulum',
line=dict(width=2, color=pendulum_color),
marker=dict(size=10, color=pendulum_color)
)]
)
# If trace is True, add path traces
if trace:
path_1 = go.Scatter(
x=x_1, y=y_1,
mode='lines',
name='Path of P1',
line=dict(width=1, color=trace_color_theta1),
)
path_2 = go.Scatter(
x=x_2, y=y_2,
mode='lines',
name='Path of P2',
line=dict(width=1, color=trace_color_theta2),
)
fig.add_trace(path_1)
fig.add_trace(path_2)
# Calculate the max extent based on the precomputed positions
max_extent = max(
np.max(np.abs(x_1)),
np.max(np.abs(y_1)),
np.max(np.abs(x_2)),
np.max(np.abs(y_2))
)
# Add padding to the max extent
padding = 0.1 * max_extent # 10% padding
axis_range_with_padding = [-max_extent - padding, max_extent + padding]
# Add frames to the animation
step = 10
frames = [go.Frame(data=[go.Scatter(x=[0, x_1[k], x_2[k]], y=[0, y_1[k], y_2[k]],
mode='lines+markers',
line=dict(width=2))])
for k in range(0, len(x_1), step)] # Use a step to reduce the number of frames
fig.frames = frames
# Define the base layout configuration
base_layout = dict(
plot_bgcolor=background_color,
paper_bgcolor=background_color,
xaxis=dict(
showgrid=True, gridwidth=1, gridcolor=grid_color,
range=axis_range_with_padding,
autorange=False, zeroline=False, tickcolor=text_color,
tickfont=dict(size=12, color=text_color),
),
yaxis=dict(
showgrid=True, gridwidth=1, gridcolor=grid_color,
range=axis_range_with_padding,
autorange=False, zeroline=False,
scaleanchor='x', scaleratio=1,
tickcolor=text_color,
tickfont=dict(size=12, color=text_color),
),
autosize=False,
width=fig_width,
height=fig_height,
updatemenus=[{
'type': 'buttons',
'buttons': [
dict(
label="Play",
method="animate",
args=[None, {"frame": {"duration": 33, "redraw": True}, "fromcurrent": True,
"mode": "immediate",
'label': 'Play',
'font': {'size': 14, 'color': 'black'},
'bgcolor': 'lightblue'
}],
)
],
'direction': "left",
'pad': {"r": 10, "t": 10}, # Adjust padding if needed
'showactive': False,
'type': 'buttons',
'x': 0.05, # Position for x
'y': 0.95, # Position for y,(the top of the figure)
'xanchor': "left",
'yanchor': "top"
}],
margin=dict(l=20, r=20, t=20, b=20),
)
# Update the layout based on the 'static' argument
if static:
static_updates = dict(
xaxis_fixedrange=True, # Disables horizontal zoom/pan
yaxis_fixedrange=True, # Disables vertical zoom/pan
dragmode=False, # Disables dragging
showlegend=False # Hides legend
)
fig.update_layout(**base_layout, **static_updates)
else:
fig.update_layout(**base_layout)
return fig