-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathStoreByteList.thy
174 lines (154 loc) · 5.47 KB
/
StoreByteList.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
theory StoreByteList
imports Main "hoare/Hoare"
begin
lemma word_of_nat [simp] : "word_of_int (int (unat x)) = x"
by (metis uint_nat word_of_int_uint)
fun store_byte_list_memory_old :: "w256 \<Rightarrow> byte list \<Rightarrow> memory \<Rightarrow> memory" where
" store_byte_list_memory_old pos [] orig = orig"
|" store_byte_list_memory_old pos (h # t) orig = (
store_byte_list_memory_old (pos +((word_of_int 1) :: 256 word)) t
(\<lambda> p . if pos = p then h else orig p))"
lemma find_mod :
"uint (word_of_int x::w256) = (x::int) mod 2^256"
apply (auto simp:uint_word_of_int)
done
lemma unat_mod [simp]:
"unat (word_of_int (int x)::w256) = x mod 2^256"
apply (simp add: find_mod unat_def)
by (metis (mono_tags, hide_lams) Divides.transfer_int_nat_functions(2) nat_int.Rep_inverse' of_nat_numeral)
lemma simp_take :
"n > 0 \<Longrightarrow>
take n (a # lst) = a#take (n-1) lst"
using List.take_Suc_Cons [of "n-1" a lst]
apply auto
done
lemma take_index [simp] :
"i < n \<Longrightarrow>
i < length lst \<Longrightarrow>
index (take n lst) i = Some (lst!i)"
apply(simp)
done
lemma minus_one_large :
"(-1::int) mod 2^256 = 2^256-1"
apply auto
done
lemma minus_one_word :
"uint (-1::w256) = 2^256-1"
proof -
have "uint ((word_of_int (-1))::w256) = (-1) mod 2^256"
using find_mod
by blast
then have "uint ((-1)::w256) = (-1) mod 2^256" by auto
then show ?thesis using minus_one_large by auto
qed
lemma minus_one_word_nat :
"unat (-1::w256) = 2^256-1"
using minus_one_word
by (simp add: unat_def)
lemma split_new :
"n < 2^256 \<Longrightarrow>
store_byte_list_memory w
(a # take n lst) mem x =
store_byte_list_memory (w+1) (take n lst)
(\<lambda>p. if w = p then a else mem p) x"
apply (auto simp add:store_byte_list_memory_def)
apply (cases "unat (-1) < n")
apply (auto simp: minus_one_word_nat)
apply (cases "unat (x - w) \<le> n")
apply (cases "unat (x - w) \<le> length lst")
apply auto
apply (cases "unat (x - (w+1)) < n")
apply (cases "unat (x - (w+1)) < length lst")
apply auto
subgoal
proof -
assume a1: "w \<noteq> x"
assume a2: "unat (x - (w + 1)) < n"
have "x - w \<noteq> 0"
using a1 by auto
then have "lst ! unat (x - (1 + w)) = take n lst ! (unat (x - w) - 1) \<and> 0 \<noteq> unat (x - w)"
using a2 by (simp add: add.commute diff_add_eq_diff_diff_swap unat_eq_zero unat_minus_one)
then show "(a # take n lst) ! unat (x - w) = lst ! unat (x - (w + 1))"
by (simp add: add.commute)
qed
subgoal proof -
assume a1: "w \<noteq> x"
assume a2: "unat (x - w) \<le> length lst"
assume a3: "\<not> unat (x - (w + 1)) < length lst"
have f4: "\<forall>n. (0::nat) + (n - 0) = n"
using linordered_semidom_class.add_diff_inverse by blast
have f5: "(0::nat) + 0 = 0"
by blast
have f6: "\<forall>w wa. (w::256 word) + (wa - w) = wa"
by auto
have f7: "\<forall>w wa. (w::256 word) + wa - w = wa"
by simp
have f8: "\<forall>w. unat ((w::256 word) - 1) < unat w \<or> 0 = w"
using f5 f4 by (metis (no_types) One_nat_def diff_is_0_eq' diff_less lessI not_le unat_eq_zero unat_minus_one)
have f9: "\<forall>n. (0::nat) + n = n"
by linarith
have "\<forall>n. unat (x - w) - (n + length lst) = 0"
using a2 by force
then have "length lst = unat (x - (1 + w)) \<or> x - w = 0"
using f9 a3 by (metis (no_types) add.commute diff_diff_add linordered_semidom_class.add_diff_inverse unat_minus_one)
then show "(a # lst) ! unat (x - w) = mem x"
using f8 f7 f6 a2 a1 by (metis (no_types) diff_add_eq_diff_diff_swap not_le right_minus_eq)
qed
apply (metis (mono_tags, hide_lams) add.left_neutral cancel_ab_semigroup_add_class.diff_right_commute diff_add_cancel diff_add_eq_diff_diff_swap less_le_trans measure_unat)
apply (cases "unat (x - (w+1)) < n")
apply (cases "unat (x - (w+1)) < length lst")
apply auto
subgoal proof -
assume a1: "\<not> unat (x - w) \<le> length lst"
assume "unat (x - (w + 1)) < length lst"
then have f2: "Suc (unat (x - (w + 1))) \<le> length lst"
by (metis Suc_leI)
have "\<forall>n. \<not> n \<le> length lst \<or> unat (of_nat n::256 word) = n"
using a1 by (metis (no_types) le_unat_uoi less_imp_le not_less)
then show "mem x = lst ! unat (x - (w + 1))"
using f2 a1 by fastforce
qed
apply (cases "unat (x - (w+1)) < n")
apply (cases "unat (x - (w+1)) < length lst")
apply auto
proof -
assume a1: "w \<noteq> x"
assume a2: "\<not> unat (x - w) \<le> n"
assume a3: "unat (x - (w + 1)) < n"
have "\<forall>n. n + 1 = Suc n"
by presburger
then have f4: "\<forall>n. n \<le> 0 \<or> Suc (n - 1) = n"
by (metis (no_types) One_nat_def not_less_eq_eq ordered_cancel_comm_monoid_diff_class.diff_add)
have f5: "Suc (unat (x - (w + 1))) \<le> n"
using a3 by auto
have "\<not> unat (x - w) \<le> 0"
using a2 by linarith
then have "x - w = 0"
using f5 f4 a2 by (metis (no_types) diff_diff_add unat_minus_one)
then show "mem x = lst ! unat (x - (w + 1))"
using a1 by (metis right_minus_eq)
qed
lemma funext : "(\<forall>x. f x = g x) \<Longrightarrow> f = g"
apply auto
done
lemma store_byte_list_eq :
"n \<le> 2^256 \<Longrightarrow>
store_byte_list_memory_old w (take n lst) mem =
store_byte_list_memory w (take n lst) mem"
apply (induction lst arbitrary: w n mem)
apply (auto)
apply (rule funext)
apply (simp add:store_byte_list_memory_def)
apply (rule funext)
apply (auto)
subgoal for a lst w n mem x
apply (cases "n > 0")
defer
apply auto
apply (simp add:store_byte_list_memory_def)
apply (simp add:simp_take)
using split_new
apply force
done
done
end