-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain.c
1308 lines (1123 loc) · 51.7 KB
/
main.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* <h2><center>© Copyright (c) 2020 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
#include "stm32f4xx_hal.h"
#include "Quaternion.h"
#include "pid.h"
#include "PWM.h"
#include "Filters.h"
#include "fuzzy.h"
#include "STM32F4_FLASH_MEMORY.h"
#include "nRF24_Receive.h"
#include "tm_stm32_mpu9250.h"
#include "tm_stm32_nrf24l01.h"
#include "tm_stm32_delay.h"
#include "utils.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
#define PI (3.141592f) //the ratio of the circumference of a circle to its diameter.
#define dt (2.0f) //Least dt milliseconds (>1/dt mHz)Update term (milliseconds).
#define init_angle_average (40) //Initiate_Setting_angle.
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
I2C_HandleTypeDef hi2c1;
SPI_HandleTypeDef hspi1;
TIM_HandleTypeDef htim2;
TIM_HandleTypeDef htim3;
TIM_HandleTypeDef htim5;
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_I2C1_Init(void);
static void MX_SPI1_Init(void);
static void MX_TIM2_Init(void);
static void MX_TIM3_Init(void);
static void MX_TIM5_Init(void);
static void MX_USART1_UART_Init(void);
static void MX_USART2_UART_Init(void);
/* USER CODE BEGIN PFP */
void UART1_TX_string(char* str);
void UART2_TX_string(char* str);
void uart_recv_val(uint8_t* arr, __PID* pid,int *Controller_1, float* setting_angle);
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
//==============================GLOBAL VARIABLES================================
//==============================================================================
//==============================UART variables==================================
uint8_t Tx_buffer[50]; //Transmit buffer.
uint8_t uart1_rx_irq_buffer[8]; //Receive buffer.
uint8_t uart1_tx_to_MFC[16]; //Transmit buffer.
uint8_t uart2_tx_data[255];
uint8_t data;
int count = 0;
//volatile __IO uint8_t DMA_Rx_Flag = 0;
//volatile __IO uint8_t DMA_Tx_Flag = 0;
//==============================INIT Variables==================================
//=============================MPU9250 variables================================
//==============================================================================
//=======================nRF24L01 GLOBAL VARIABLES==============================
//uint8_t TxAddress[] = { // Controller
// 0xE7,
// 0xE7,
// 0xE7,
// 0xE7,
// 0xE7
//};
uint8_t MyAddress[] = { // Controller
0x7E,
0x7E,
0x7E,
0x7E,
0x7E
};
//int value=0;
//==============================================================================
//================================printf FUNCTION===============================
//int fputc(int ch ,FILE *f)
//{
// //UART2_TX_string((char *)ch);
// HAL_UART_Transmit(&huart2,(uint8_t*)&ch,1,0xFFFF);
// return ch;
//}
//==============================================================================
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
//==============================INIT Variables================================
TM_MPU9250_t MPU9250; //MPU9250 Sensor structure.
__PID pid; //PID Controll structure.
//========================Flags and Time_flags================================
uint32_t Now = 0; //Used to calculate integration interval.
uint32_t lastUpdate = 0; //Used to calculate integration interval.
uint32_t before_while = 0; //Time of Before entering while loop.
uint16_t wait = 0; //getting initiate setting_angle waiting time.
uint8_t wait_flag = 0; //Time waiting flag.
uint8_t errflag = 0;
// uint8_t UART1_flag=0;
//=============================UART Variables=================================
//========================Quaternion VARIABLES================================
float deltat = 0.0f; //integration interval for filter schemes.
float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; //vector to hold quaternion.
float q2[4] = {1.0f, 0.0f, 0.0f, 0.0f}; //vector to hold quaternion.
float Euler_angle[3] = {0.0f, 0.0f, 0.0f}; //roll pitch yaw.
float Euler_angle2[3] = {0.0f, 0.0f, 0.0f}; //roll pitch yaw.
float Euler_angle_Union[3] = {0.0f, 0.0f, 0.0f}; //roll pitch yaw.
//=============================Fuzzy Variables================================
float prev_err[3]; //Prev_Setting_point - Euler_angle.
//==============================PWM Variables=================================
int Controller_1 = 15; //Moter Throttle.
//==============================FILTER's Variables============================
// float preEuler_angle[3] = {0.0f, 0.0f, 0.0f}; //Used in LPF.
// float LPF_Euler_angle[3] = {0.0f, 0.0f, 0.0f}; //Used in LPF.
// float preGyro[3] = {0.0f, 0.0f, 0.0f}; //Used in GyroLPF.
// float LPF_Gyro[3] = {0.0f, 0.0f, 0.0f}; //Used in GyroLPF.
//=============================MPU9250 Variables==============================
float Self_Test[6] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}; //MPU9250 Accell and Gyro Self_Test.
float Self_Test_Mag[3] = {0.0f, 0.0f, 0.0f}; //MPU9250 Magnetometer Self_Test.
//========================Drone Calibration Mode Variables====================
uint8_t CaliFlag = 1;
//============================nRF24L01 VARIABLES==============================
int temp_int = 0; //uint8_t
float temp = 0; //uint8_t
//====================Hanging Variables from external controll================
float setting_angle[3] = {0.0f, 0.0f, 0.0f}; //roll pitch yaw.
float init_setting_angle[3] = {0.0f, 0.0f, 0.0f};
// float pid_val[3][3] = {{0.95f, 0.01f, 0.0f}, {0.8f, 0.01f, 0.0f}, {1.0f, 0.0f, 0.0f}}; //P I D gain controll (Roll PID, Pitch PID, Yaw PID sequences).
// float inpid_val[3][3] = {{40.501f, 0.01f, 0.570f}, {45.501f, 0.01f, 0.970f}, {20.0f, 0.0f, 0.5f}}; //P I D gain controll (Roll PID, Pitch PID, Yaw PID sequences).
float pid_val[3][3] = {{0.95f, 0.01f, 0.0f}, {0.8f, 0.01f, 0.0f}, {1.0f, 0.0f, 0.0f}}; //P I D gain controll (Roll PID, Pitch PID, Yaw PID sequences).
float inpid_val[3][3] = {{40.501f, 0.01f, 0.570f}, {45.501f, 0.01f, 0.970f}, {20.0f, 0.0f, 0.5f}}; //P I D gain controll (Roll PID, Pitch PID, Yaw PID sequences).
float angular_velocity[3]; //For double loop PID.
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
__INIT__MPU9250(&MPU9250); //Init MPU9250 variables.
MPU9250SelfTest(&MPU9250, &Self_Test[0],TM_MPU9250_Device_0); //Selftest MPU9250.
//calibrateMPU9250(&MPU9250); //Calibrate MPU9250 Accelometer and Gyroscope.
TM_MPU9250_Init(&MPU9250, TM_MPU9250_Device_0); //Init MPU9250 and setting.
TM_MPU9250_ReadMagASA(&MPU9250); //Get MPU9250 Magnetic ASA data.
pid_init(&pid, pid_val, inpid_val); //Init pid values.
fuzzy_init(); //Init fuzzy values.
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_I2C1_Init();
MX_SPI1_Init();
MX_TIM2_Init();
MX_TIM3_Init();
MX_TIM5_Init();
MX_USART1_UART_Init();
MX_USART2_UART_Init();
/* USER CODE BEGIN 2 */
//System_information();
//STM32f4_USART2_Init();
//=============================Calibration Part===============================
if(CaliFlag == 0) //0 is disable.
{
HAL_TIM_PWM_Stop(&htim5, TIM_CHANNEL_1);
HAL_TIM_PWM_Stop(&htim2, TIM_CHANNEL_2);
HAL_TIM_PWM_Stop(&htim2, TIM_CHANNEL_1);
HAL_TIM_PWM_Stop(&htim3, TIM_CHANNEL_1);
MPU9250SelfTest(&MPU9250, &Self_Test[0],TM_MPU9250_Device_0);
//calibrateMPU9250(&MPU9250);
Delayms(500);
TM_MPU9250_Init(&MPU9250, TM_MPU9250_Device_0);
TM_MPU9250_ReadMagASA(&MPU9250); //Get MPU9250 Magnetic ASA data.
AK8963SelfTest(&MPU9250, &Self_Test_Mag[0]);
MagCalibration(&MPU9250);
//while(1){} //Unlimited loop.
}
//==========================Calibration Part END==============================
//==============================PWM START=====================================
if (1)
{
HAL_TIM_PWM_Start(&htim5, TIM_CHANNEL_1);
HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_2);
HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_1);
HAL_TIM_PWM_Start(&htim3, TIM_CHANNEL_1);
}
//ESC_Calibration();
Motor_Init();
//Motor_Start();
TM_NRF24L01_Init(120,8);
TM_NRF24L01_SetRF(TM_NRF24L01_DataRate_250k, TM_NRF24L01_OutputPower_0dBm);
TM_NRF24L01_SetMyAddress(MyAddress);
//======================Get Biases From Flash Memory==========================
if(1){
Get_biases(&MPU9250);
}
//=====================Get Biases From Flash Memory END=======================
before_while = HAL_GetTick(); //Get time of before while loop.
lastUpdate = before_while; //First time of lastUpdate using for gain the deltat.
LL_USART_EnableIT_RXNE(USART1);
// LL_USART_EnableIT_RXNE(USART2);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
//int aa = HAL_GetTick(); //Get time.
//============================Get MPU9250 data================================
TM_MPU9250_ReadAcce(&MPU9250); //get Accel data.
TM_MPU9250_ReadGyro(&MPU9250); //get Gyro data.
TM_MPU9250_ReadMag(&MPU9250); //get Magnetic data.
//==========================Get MPU9250 data END==============================
//===Subtract Automatic Accelometer Gyroscope and Magnetic filed bias===
MPU9250.Ax -= MPU9250.Accbiasx; //callibrate Accel values.
MPU9250.Ay -= MPU9250.Accbiasy;
MPU9250.Az -= MPU9250.Accbiasz;
MPU9250.Gx -= MPU9250.Gybiasx; //callibrate Gyro values.
MPU9250.Gy -= MPU9250.Gybiasy;
MPU9250.Gz -= MPU9250.Gybiasz;
MPU9250.Mx -= MPU9250.Magbiasx; //callibrate Magnetic values.
MPU9250.My -= MPU9250.Magbiasy;
MPU9250.Mz -= MPU9250.Magbiasz;
MPU9250.Mx *= MPU9250.Magscalex; //callibrate Magnetic values.
MPU9250.My *= MPU9250.Magscaley;
MPU9250.Mz *= MPU9250.Magscalez;
//====Subtract Automatic Accelometer Gyroscope and Magnetic filed bias END====
//===========================Init settiing angle==============================
if (wait_flag < init_angle_average)
{
wait = HAL_GetTick() - before_while;
if (wait >= 5000)
{
init_setting_angle[0] += Euler_angle[0]; //roll.
init_setting_angle[1] += Euler_angle[1]; //pitch.
init_setting_angle[2] += Euler_angle[2]; //yaw.
wait_flag ++;
}
}
if (wait_flag == init_angle_average)
{
// setting_angle[0] = init_setting_angle[0] / init_angle_average; //init roll.
// setting_angle[1] = init_setting_angle[1] / init_angle_average; //init pitch.
setting_angle[2] = init_setting_angle[2] / init_angle_average; //init yaw.
wait_flag ++;
}
//============================Init settiing angle END=========================
//============================Get delta_t=====================================
Now = HAL_GetTick(); //Get current time.
deltat += (Now - lastUpdate); //Set integration time by time elapsed since+ last filter update (milliseconds).
lastUpdate = Now; //Update lastupdate time to current time.
//============================Get delta T END=================================
//============================================================================
angular_velocity[0] = MPU9250.Gx / 10.0f * dt; //angular velocity (degree/1ms(*2))
angular_velocity[1] = MPU9250.Gy / 10.0f * dt;
angular_velocity[2] = MPU9250.Gz / 10.0f * dt;
if (deltat >= dt) //Update term (500Hz.dt=2).
{
deltat /= 1000.0f; //Make millisecond to second.
//__LPFGyro(LPF_Gyro, &MPU9250, preGyro, deltat);
MahonyQuaternionUpdate(MPU9250.Ax, MPU9250.Ay, MPU9250.Az, MPU9250.Gx*PI/180.0f, MPU9250.Gy*PI/180.0f, MPU9250.Gz*PI/180.0f, MPU9250.My, MPU9250.Mx, -MPU9250.Mz, q, deltat);
MahonyAHRSupdateIMU2(MPU9250.Ax, MPU9250.Ay, MPU9250.Az, MPU9250.Gx*PI/180.0f, MPU9250.Gy*PI/180.0f, MPU9250.Gz*PI/180.0f, q2, deltat);
Quternion2Euler(q, Euler_angle); //Get Euler angles (roll, pitch, yaw) from Quaternions.
Quternion2Euler(q2, Euler_angle2); //Get Euler angles (roll, pitch, yaw) from Quaternions.
//__LPF(LPF_Euler_angle, Euler_angle, preEuler_angle, deltat);
Euler_angle_Union[0] = Euler_angle2[0];
Euler_angle_Union[1] = Euler_angle2[1];
Euler_angle_Union[2] = Euler_angle[2];
Euler_angle_Union[0] = constrain(Euler_angle_Union[0], -90.0, 90.0);
//===================================Fuzzy part===============================
// Fuzzification(setting_angle[0], Euler_angle[0], &prev_err[0]); //Fuzzy roll part.
// Create_Fuzzy_Matrix(0);
// Defuzzification(&inpid_val[0][0],&inpid_val[0][1],&inpid_val[0][2], 0); //Fuzzy roll end.
//
// Fuzzification(setting_angle[1], Euler_angle[1], &prev_err[1]); //Fuyzzy pitch part.
// Create_Fuzzy_Matrix(1);
// Defuzzification(&inpid_val[1][0],&inpid_val[1][1],&inpid_val[1][2], 1); //Fuzzy pitch end.
//
// Fuzzification(setting_angle[2], Euler_angle[2], &prev_err[2]); //Fuzzy yaw part.
// Create_Fuzzy_Matrix(2);
// Defuzzification(&inpid_val[2][0],&inpid_val[2][1],&inpid_val[2][2], 2); //Fuzzy yaw end.
// pid_gain_update(&pid, pid_val, inpid_val); //From Fuzzy the PID gain value is changed.
//
// Fuzzification(setting_angle[0], Euler_angle_Union[0], &prev_err[0]); //Fuzzy roll part.
// Create_Fuzzy_Matrix(0);
// Defuzzification(&inpid_val[0][0],&inpid_val[0][1],&inpid_val[0][2], 0); //Fuzzy roll end.
//
// Fuzzification(setting_angle[1], Euler_angle_Union[1], &prev_err[1]); //Fuyzzy pitch part.
// Create_Fuzzy_Matrix(1);
// Defuzzification(&inpid_val[1][0],&inpid_val[1][1],&inpid_val[1][2], 1); //Fuzzy pitch end.
//
// Fuzzification(setting_angle[2], Euler_angle_Union[2], &prev_err[2]); //Fuzzy yaw part.
// Create_Fuzzy_Matrix(2);
// Defuzzification(&inpid_val[2][0],&inpid_val[2][1],&inpid_val[2][2], 2); //Fuzzy yaw end.
// pid_gain_update(&pid, pid_val, inpid_val); //From Fuzzy the PID gain value is changed.
//================================Fuzzy part END==============================
if (HAL_GetTick() - before_while >= 5500)
{
__pid_update(&pid, setting_angle, Euler_angle_Union, angular_velocity, deltat); //PID value update.
//__pid_update(&pid, setting_angle, Euler_angle, angular_velocity, deltat); //PID value update.
//__pid_update(&pid, setting_angle, LPF_Euler_angle, angular_velocity, deltat); //PID value update.
pid.output[0] = constrain(pid.output[0], -6000.0, 6000.0);
pid.output[1] = constrain(pid.output[1], -6000.0, 6000.0);
pid.output[2] = constrain(pid.output[2], -6000.0, 6000.0);
}
//=======Check dead board=================================================
if (MPU9250.Ax_Raw == 0 && MPU9250.Ay_Raw == 0 && MPU9250.Az_Raw == 30209 \
&& MPU9250.Gx_Raw == 0 && MPU9250.Gy_Raw == 0 && MPU9250.Gz_Raw == 30209 \
&& MPU9250.Mx_Raw == 6 && MPU9250.My_Raw == 0 && MPU9250.Mz_Raw == 0)
{
errflag ++;
// Euler_angle_Union[0] -= 90;
// Euler_angle_Union[1] -= 38;
// Euler_angle_Union[2] += 83;
if(errflag >=2)
{
Controller_1 = 0;
setting_angle[0] = 0;
setting_angle[1] = 0;
setting_angle[2] = 0;
pid.output[0] = 0;
pid.output[1] = 0;
pid.output[2] = 0;
errflag = 2;
}
}
//if(Euler_angle[2] < 0) Euler_angle[2] += 360.0f; // Ensure yaw stays between 0 and 360
deltat = 0.0f; //reset deltat.
}
/*-----------------------------------------------------------------------------------------------*/
//============================Data print transmit UART part=====================
//sprintf((char*)uart2_tx_data,"%10.4f %10.4f %10.4f %10.4f %10.4f %10.4f %10.4f %10.4f %10.4f \r\n", \
MPU9250.Ax, MPU9250.Ay ,MPU9250.Az, MPU9250.Gx, MPU9250.Gy, MPU9250.Gz, MPU9250.Mx, MPU9250.My, MPU9250.Mz);
//sprintf((char*)uart2_tx_data,"%10.4f %10.4f %10.4f \r\n", MPU9250.Mx, MPU9250.My, MPU9250.Mz);
//sprintf((char*)uart2_tx_data,"%10.4f %10.4f %10.4f %10.4f %10.4f %10.4f %10.4f %10.4f %10.4f \r\n", \
MPU9250.Ax, MPU9250.Ay ,MPU9250.Az, MPU9250.Gx, MPU9250.Gy, MPU9250.Gz, LPF_Gyro[0],LPF_Gyro[1], LPF_Gyro[2]);
//sprintf((char*)uart2_tx_data,"%f %f %f %f %f %f\r\n", Self_Test[0], Self_Test[1], Self_Test[2], Self_Test[3], Self_Test[4], Self_Test[5]);
//sprintf((char*)uart2_tx_data,"%f %f %f\r\n", Self_Test_Mag[0], Self_Test_Mag[1], Self_Test_Mag[2]);
//sprintf((char*)uart2_tx_data,"%f %f %f %f %f %f %f %f %f\r\n", MPU9250.Accbiasx, MPU9250.Accbiasy, MPU9250.Accbiasz, MPU9250.Gybiasx, MPU9250.Gybiasy, MPU9250.Gybiasz, MPU9250.Magbiasx, MPU9250.Magbiasy, MPU9250.Magbiasz);
//sprintf((char*)uart2_tx_data,"%f %f %f %f %f %f\r\n", MPU9250.Magbiasx, MPU9250.Magbiasy, MPU9250.Magbiasz, MPU9250.Magscalex, MPU9250.Magscaley, MPU9250.Magscalez);
//sprintf((char*)uart2_tx_data,"%10.4f %10.4f %10.4f %10.4f\r\n", q[0], q[1], q[2], q[3]);
//sprintf((char*)uart2_tx_data,"%10.4f %10.4f %10.4f %10.4f %10.4f %10.4f %10.4f %10.4f %10.4f\r\n", pid.iKp[0], pid.iKi[0], pid.iKd[0], pid.iKp[1], pid.iKi[1], pid.iKd[1],pid.iKp[2], pid.iKi[2], pid.iKd[2]);
//sprintf((char*)uart2_tx_data,"%10.2f %10.2f %10.2f %10.2f %10.2f %10.2f %10.2f %10.2f %10.2f\r\n", Euler_angle[0], Euler_angle[1], Euler_angle[2], setting_angle[0], setting_angle[1], setting_angle[2], pid.output[0],pid.output[1], pid.output[2]);
//sprintf((char*)uart2_tx_data,"%10.2f %10.2f %10.2f %10.2f %10.2f %10.2f %10.2f %10.2f %10.2f\r\n", LPF_Euler_angle[0], LPF_Euler_angle[1], LPF_Euler_angle[2], setting_angle[0], setting_angle[1], setting_angle[2], pid.output[0],pid.output[1], pid.output[2]);
//sprintf((char*)uart2_tx_data,"%4d %4d %4d\r\n", (int)LPF_Euler_angle[0], (int)LPF_Euler_angle[1], (int)LPF_Euler_angle[2]);
//sprintf((char*)uart2_tx_data,"%4d %4d %4d\r\n", (int)Euler_angle[0], (int)Euler_angle[1], (int)Euler_angle[2]);
//sprintf((char*)uart2_tx_data,"%10.2f %10.2f %10.2f %10.2f %10.2f %10.2f %10.2f\r\n", Euler_angle[0], Euler_angle[1], Euler_angle[2], setting_angle[0], setting_angle[1], setting_angle[2], pid.output[2]);
//sprintf((char*)uart2_tx_data,"%10.2f %10.2f %10.2f %10.2f %10.2f %10.2f\r\n", Euler_angle[0], Euler_angle[1], Euler_angle[2], setting_angle[0], setting_angle[1], setting_angle[2]);
//sprintf((char*)uart2_tx_data,"%4d,%4d,%4d %4d,%4d,%4d\r\n", (int)Euler_angle[0], (int)Euler_angle[1], (int)Euler_angle[2], (int)Euler_angle2[0], (int)Euler_angle2[1], (int)Euler_angle2[2]);
//sprintf((char*)uart2_tx_data,"%4d,%4d,%4d %4d,%4d,%4d %4d,%4d,%4d\r\n", (int)Euler_angle[0], (int)Euler_angle[1], (int)Euler_angle[2], (int)Euler_angle2[0], (int)Euler_angle2[1], (int)Euler_angle2[2], (int)Euler_angle_Union[0], (int)Euler_angle_Union[1], (int)Euler_angle_Union[2]);
//sprintf((char*)uart2_tx_data,"%4d,%4d,%4d\r\n", (int)Euler_angle_Union[0], (int)Euler_angle_Union[1], (int)Euler_angle_Union[2]);
sprintf((char*)uart2_tx_data,"%4d,%4d,%4d %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %d\r\n", (int)Euler_angle_Union[0], (int)Euler_angle_Union[1], (int)Euler_angle_Union[2],pid.output[0],pid.output[1], pid.output[2], setting_angle[0], setting_angle[1], setting_angle[2], Controller_1);
//sprintf((char*)uart2_tx_data,"%7.2f %7.2f %7.2f\r\n", pid.iKp[0],pid.iKi[0],pid.iKd[0]);
//UART2_TX_string((char *)uart2_tx_data);
//=========================Data print transmit UART part END===================
//===========================BLDC Motor Part===================================
if(HAL_GetTick() - before_while >= 5000 && HAL_GetTick() - before_while < 6000)
{
Motor_Start();
}
else if (HAL_GetTick() - before_while >= 6000)
{
//Motor_Drive(Controller_1, pid.output);
if (Controller_1 <= 5)
{
MOTOR_V1 = MIN_PULSE;
MOTOR_V2 = MIN_PULSE;
MOTOR_V3 = MIN_PULSE;
MOTOR_V4 = MIN_PULSE;
}
else if (Controller_1 > 5) //Controller_1
{
if (fabs(Euler_angle_Union[0]) > 15.0f || fabs(Euler_angle_Union[1]) > 15.0f) //Restrict yaw acting Euler angle.
{
pid.output[2] = 0.0f;
}
MOTOR_V1 = MIN_PULSE + (Controller_1 * 70) + (int)(0.7 * (MoterGain_roll) * pid.output[0]) - (int)(0.7 * (MoterGain_pitch) * pid.output[1]) + (int)(MoterGain_yaw * pid.output[2]);
//MOTOR_V1 = MIN_PULSE + (Controller_1 * 70) + (int)(0.7 * MoterGain_yaw * pid.output[2]);
//MOTOR_V1 = MIN_PULSE + (Controller_1 * 70) + (int)(0.7 * (MoterGain_roll) * pid.output[0]) - (int)(0.7 * (MoterGain_pitch) * pid.output[1]);
//MOTOR_V1 = MIN_PULSE + (Controller_1 * 70) - (int)(0.7 * MoterGain_pitch * pid.output[1]);
//MOTOR_V1 = MIN_PULSE + (Controller_1 * 70) + (int)(0.7 * MoterGain_roll * pid.output[0]);
// MOTOR_V1 = MIN_PULSE + (Controller_1 * 70);
if (MOTOR_V1 >= MAX_PULSE)// - MOTER_SAFTY)
MOTOR_V1 = MAX_PULSE;// - MOTER_SAFTY;
else if (MOTOR_V1 <= MIN_PULSE + 700)
MOTOR_V1 = MIN_PULSE + 700;
MOTOR_V2 = MIN_PULSE + (Controller_1 * 70) - (int)(0.7 * (MoterGain_roll) * pid.output[0]) - (int)(0.7 * (MoterGain_pitch) * pid.output[1]) - (int)(MoterGain_yaw * pid.output[2]);
//MOTOR_V2 = MIN_PULSE + (Controller_1 * 70) - (int)(0.7 * MoterGain_yaw * pid.output[2]);
//MOTOR_V2 = MIN_PULSE + (Controller_1 * 70) - (int)(0.7 * (MoterGain_roll) * pid.output[0]) - (int)(0.7 * (MoterGain_pitch) * pid.output[1]);
//MOTOR_V2 = MIN_PULSE + (Controller_1 * 70) - (int)(0.7 * (MoterGain_pitch) * pid.output[1]);
//MOTOR_V2 = MIN_PULSE + (Controller_1 * 70) - (int)(0.7 * MoterGain_roll * pid.output[0]);
//MOTOR_V2 = MIN_PULSE + (Controller_1 * 70);
if (MOTOR_V2 >= MAX_PULSE)// - MOTER_SAFTY)
MOTOR_V2 = MAX_PULSE;// - MOTER_SAFTY;
else if (MOTOR_V2 <= MIN_PULSE + 700)
MOTOR_V2 = MIN_PULSE + 700;
MOTOR_V3 = MIN_PULSE + (Controller_1 * 70) + (int)(0.7 * (MoterGain_roll) * pid.output[0]) + (int)(0.7 * (MoterGain_pitch) * pid.output[1]) - (int)(MoterGain_yaw * pid.output[2]);
//MOTOR_V3 = MIN_PULSE + (Controller_1 * 70) - (int)(0.7 * MoterGain_yaw * pid.output[2]);
//MOTOR_V3 = MIN_PULSE + (Controller_1 * 70) + (int)(0.7 * (MoterGain_roll) * pid.output[0]) + (int)(0.7 * (MoterGain_pitch) * pid.output[1]);
//MOTOR_V3 = MIN_PULSE + (Controller_1 * 70) + (int)(0.7 * MoterGain_pitch * pid.output[1]);
//MOTOR_V3 = MIN_PULSE + (Controller_1 * 70) + (int)(0.7 * MoterGain_roll * pid.output[0]);
//MOTOR_V3 = MIN_PULSE + (Controller_1 * 70);
if (MOTOR_V3 >= MAX_PULSE)// - MOTER_SAFTY)
MOTOR_V3 = MAX_PULSE;// - MOTER_SAFTY;
else if (MOTOR_V3 <= MIN_PULSE + 700)
MOTOR_V3 = MIN_PULSE + 700;
MOTOR_V4 = MIN_PULSE + (Controller_1 * 70) - (int)(0.7 * (MoterGain_roll) * pid.output[0]) + (int)(0.7 * (MoterGain_pitch) * pid.output[1]) + (int)(MoterGain_yaw * pid.output[2]);
//MOTOR_V4 = MIN_PULSE + (Controller_1 * 70) + (int)(0.7 * MoterGain_yaw * pid.output[2]);
//MOTOR_V4 = MIN_PULSE + (Controller_1 * 70) - (int)(0.7 * (MoterGain_roll) * pid.output[0]) + (int)(0.7 * (MoterGain_pitch) * pid.output[1]);
//MOTOR_V4 = MIN_PULSE + (Controller_1 * 70) + (int)(0.7 * (MoterGain_pitch) * pid.output[1]);
//MOTOR_V4 = MIN_PULSE + (Controller_1 * 70) - (int)(0.7 * MoterGain_roll * pid.output[0]);
//MOTOR_V4 = MIN_PULSE + (Controller_1 * 70);
if (MOTOR_V4 >= MAX_PULSE)// - MOTER_SAFTY)
MOTOR_V4 = MAX_PULSE;// - MOTER_SAFTY;
else if (MOTOR_V4 <= MIN_PULSE + 700)
MOTOR_V4 = MIN_PULSE + 700;
}
}
//========================BLDC Motor Part END===================================
//========================NRF24L01 Receive Part=================================
NRF24_Receive(&Controller_1,temp,temp_int,&pid,setting_angle,Euler_angle[2]);
//=======================NRF24L01 Receive Part END==============================
//==========================Data transmit part==================================
//==========================Euler_angle_chart_part==============================
sprintf((char*)uart1_tx_to_MFC,"%d,%d,%d,", (int)Euler_angle_Union[0], (int)Euler_angle_Union[1], (int)Euler_angle_Union[2]);
//sprintf((char*)uart1_tx_to_MFC,"%d,%d,%d,", (int)Euler_angle[0], (int)Euler_angle[1], (int)Euler_angle[2]);
//UART1_TX_string((char *)uart1_tx_to_MFC);
//===========================outPID inPID change part===========================
if(count == 8)
{
count = 0;
uart_recv_val(uart1_rx_irq_buffer, &pid, &Controller_1, setting_angle);
}
//============================Data transmit part END============================
//================================TIme Check====================================
//================================TIme Check END================================
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the CPU, AHB and APB busses clocks
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 4;
RCC_OscInitStruct.PLL.PLLN = 72;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 4;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB busses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief I2C1 Initialization Function
* @param None
* @retval None
*/
static void MX_I2C1_Init(void)
{
/* USER CODE BEGIN I2C1_Init 0 */
/* USER CODE END I2C1_Init 0 */
/* USER CODE BEGIN I2C1_Init 1 */
/* USER CODE END I2C1_Init 1 */
hi2c1.Instance = I2C1;
hi2c1.Init.ClockSpeed = 400000;
hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
hi2c1.Init.OwnAddress1 = 0;
hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c1.Init.OwnAddress2 = 0;
hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if (HAL_I2C_Init(&hi2c1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN I2C1_Init 2 */
/* USER CODE END I2C1_Init 2 */
}
/**
* @brief SPI1 Initialization Function
* @param None
* @retval None
*/
static void MX_SPI1_Init(void)
{
/* USER CODE BEGIN SPI1_Init 0 */
/* USER CODE END SPI1_Init 0 */
/* USER CODE BEGIN SPI1_Init 1 */
/* USER CODE END SPI1_Init 1 */
/* SPI1 parameter configuration*/
hspi1.Instance = SPI1;
hspi1.Init.Mode = SPI_MODE_MASTER;
hspi1.Init.Direction = SPI_DIRECTION_2LINES;
hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
hspi1.Init.NSS = SPI_NSS_SOFT;
hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_16;
hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi1.Init.CRCPolynomial = 10;
if (HAL_SPI_Init(&hspi1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN SPI1_Init 2 */
/* USER CODE END SPI1_Init 2 */
}
/**
* @brief TIM2 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM2_Init(void)
{
/* USER CODE BEGIN TIM2_Init 0 */
/* USER CODE END TIM2_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
/* USER CODE BEGIN TIM2_Init 1 */
/* USER CODE END TIM2_Init 1 */
htim2.Instance = TIM2;
htim2.Init.Prescaler = 9-1;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 16000-1;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM2_Init 2 */
/* USER CODE END TIM2_Init 2 */
HAL_TIM_MspPostInit(&htim2);
}
/**
* @brief TIM3 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM3_Init(void)
{
/* USER CODE BEGIN TIM3_Init 0 */
/* USER CODE END TIM3_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
/* USER CODE BEGIN TIM3_Init 1 */
/* USER CODE END TIM3_Init 1 */
htim3.Instance = TIM3;
htim3.Init.Prescaler = 0;
htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
htim3.Init.Period = 16000-1;
htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_Init(&htim3) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM3_Init 2 */
/* USER CODE END TIM3_Init 2 */
HAL_TIM_MspPostInit(&htim3);
}
/**
* @brief TIM5 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM5_Init(void)
{
/* USER CODE BEGIN TIM5_Init 0 */
/* USER CODE END TIM5_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
/* USER CODE BEGIN TIM5_Init 1 */
/* USER CODE END TIM5_Init 1 */
htim5.Instance = TIM5;
htim5.Init.Prescaler = 9-1;
htim5.Init.CounterMode = TIM_COUNTERMODE_UP;
htim5.Init.Period = 16000-1;
htim5.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim5.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
if (HAL_TIM_Base_Init(&htim5) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim5, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_Init(&htim5) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim5, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_PWM_ConfigChannel(&htim5, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM5_Init 2 */
/* USER CODE END TIM5_Init 2 */
HAL_TIM_MspPostInit(&htim5);
}
/**
* @brief USART1 Initialization Function
* @param None
* @retval None
*/
static void MX_USART1_UART_Init(void)
{
/* USER CODE BEGIN USART1_Init 0 */
/* USER CODE END USART1_Init 0 */
LL_USART_InitTypeDef USART_InitStruct = {0};
LL_GPIO_InitTypeDef GPIO_InitStruct = {0};
/* Peripheral clock enable */
LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_USART1);
LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_GPIOA);
LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_GPIOB);
/**USART1 GPIO Configuration
PA10 ------> USART1_RX
PB6 ------> USART1_TX
*/
GPIO_InitStruct.Pin = LL_GPIO_PIN_10;
GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
GPIO_InitStruct.Alternate = LL_GPIO_AF_7;
LL_GPIO_Init(GPIOA, &GPIO_InitStruct);
GPIO_InitStruct.Pin = LL_GPIO_PIN_6;
GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
GPIO_InitStruct.Alternate = LL_GPIO_AF_7;
LL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/* USART1 DMA Init */
/* USART1_RX Init */
LL_DMA_SetChannelSelection(DMA2, LL_DMA_STREAM_2, LL_DMA_CHANNEL_4);
LL_DMA_SetDataTransferDirection(DMA2, LL_DMA_STREAM_2, LL_DMA_DIRECTION_PERIPH_TO_MEMORY);
LL_DMA_SetStreamPriorityLevel(DMA2, LL_DMA_STREAM_2, LL_DMA_PRIORITY_LOW);
LL_DMA_SetMode(DMA2, LL_DMA_STREAM_2, LL_DMA_MODE_NORMAL);
LL_DMA_SetPeriphIncMode(DMA2, LL_DMA_STREAM_2, LL_DMA_PERIPH_NOINCREMENT);
LL_DMA_SetMemoryIncMode(DMA2, LL_DMA_STREAM_2, LL_DMA_MEMORY_INCREMENT);
LL_DMA_SetPeriphSize(DMA2, LL_DMA_STREAM_2, LL_DMA_PDATAALIGN_BYTE);
LL_DMA_SetMemorySize(DMA2, LL_DMA_STREAM_2, LL_DMA_MDATAALIGN_BYTE);
LL_DMA_DisableFifoMode(DMA2, LL_DMA_STREAM_2);
/* USART1_TX Init */
LL_DMA_SetChannelSelection(DMA2, LL_DMA_STREAM_7, LL_DMA_CHANNEL_4);
LL_DMA_SetDataTransferDirection(DMA2, LL_DMA_STREAM_7, LL_DMA_DIRECTION_MEMORY_TO_PERIPH);
LL_DMA_SetStreamPriorityLevel(DMA2, LL_DMA_STREAM_7, LL_DMA_PRIORITY_LOW);
LL_DMA_SetMode(DMA2, LL_DMA_STREAM_7, LL_DMA_MODE_NORMAL);
LL_DMA_SetPeriphIncMode(DMA2, LL_DMA_STREAM_7, LL_DMA_PERIPH_NOINCREMENT);
LL_DMA_SetMemoryIncMode(DMA2, LL_DMA_STREAM_7, LL_DMA_MEMORY_INCREMENT);
LL_DMA_SetPeriphSize(DMA2, LL_DMA_STREAM_7, LL_DMA_PDATAALIGN_BYTE);
LL_DMA_SetMemorySize(DMA2, LL_DMA_STREAM_7, LL_DMA_MDATAALIGN_BYTE);
LL_DMA_DisableFifoMode(DMA2, LL_DMA_STREAM_7);
/* USART1 interrupt Init */
NVIC_SetPriority(USART1_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(),0, 0));
NVIC_EnableIRQ(USART1_IRQn);
/* USER CODE BEGIN USART1_Init 1 */
/* USER CODE END USART1_Init 1 */
USART_InitStruct.BaudRate = 115200;
USART_InitStruct.DataWidth = LL_USART_DATAWIDTH_8B;
USART_InitStruct.StopBits = LL_USART_STOPBITS_1;
USART_InitStruct.Parity = LL_USART_PARITY_NONE;
USART_InitStruct.TransferDirection = LL_USART_DIRECTION_TX_RX;
USART_InitStruct.HardwareFlowControl = LL_USART_HWCONTROL_NONE;
USART_InitStruct.OverSampling = LL_USART_OVERSAMPLING_16;
LL_USART_Init(USART1, &USART_InitStruct);
LL_USART_ConfigAsyncMode(USART1);
LL_USART_Enable(USART1);
/* USER CODE BEGIN USART1_Init 2 */
/* USER CODE END USART1_Init 2 */
}
/**
* @brief USART2 Initialization Function
* @param None
* @retval None
*/
static void MX_USART2_UART_Init(void)
{
/* USER CODE BEGIN USART2_Init 0 */
/* USER CODE END USART2_Init 0 */
LL_USART_InitTypeDef USART_InitStruct = {0};
LL_GPIO_InitTypeDef GPIO_InitStruct = {0};
/* Peripheral clock enable */
LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_USART2);
LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_GPIOA);
/**USART2 GPIO Configuration
PA2 ------> USART2_TX
PA3 ------> USART2_RX
*/
GPIO_InitStruct.Pin = LL_GPIO_PIN_2|LL_GPIO_PIN_3;
GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
GPIO_InitStruct.Alternate = LL_GPIO_AF_7;
LL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/* USART2 DMA Init */
/* USART2_RX Init */
LL_DMA_SetChannelSelection(DMA1, LL_DMA_STREAM_5, LL_DMA_CHANNEL_4);
LL_DMA_SetDataTransferDirection(DMA1, LL_DMA_STREAM_5, LL_DMA_DIRECTION_PERIPH_TO_MEMORY);
LL_DMA_SetStreamPriorityLevel(DMA1, LL_DMA_STREAM_5, LL_DMA_PRIORITY_LOW);
LL_DMA_SetMode(DMA1, LL_DMA_STREAM_5, LL_DMA_MODE_NORMAL);
LL_DMA_SetPeriphIncMode(DMA1, LL_DMA_STREAM_5, LL_DMA_PERIPH_NOINCREMENT);
LL_DMA_SetMemoryIncMode(DMA1, LL_DMA_STREAM_5, LL_DMA_MEMORY_INCREMENT);
LL_DMA_SetPeriphSize(DMA1, LL_DMA_STREAM_5, LL_DMA_PDATAALIGN_BYTE);
LL_DMA_SetMemorySize(DMA1, LL_DMA_STREAM_5, LL_DMA_MDATAALIGN_BYTE);
LL_DMA_DisableFifoMode(DMA1, LL_DMA_STREAM_5);
/* USART2_TX Init */
LL_DMA_SetChannelSelection(DMA1, LL_DMA_STREAM_6, LL_DMA_CHANNEL_4);
LL_DMA_SetDataTransferDirection(DMA1, LL_DMA_STREAM_6, LL_DMA_DIRECTION_MEMORY_TO_PERIPH);
LL_DMA_SetStreamPriorityLevel(DMA1, LL_DMA_STREAM_6, LL_DMA_PRIORITY_LOW);
LL_DMA_SetMode(DMA1, LL_DMA_STREAM_6, LL_DMA_MODE_NORMAL);