-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresidual_network_20191019.py
146 lines (136 loc) · 5.85 KB
/
residual_network_20191019.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision.transforms import Compose, ToTensor, Normalize
from torch.utils.data import DataLoader
from tqdm import tqdm # 타카둠 진행된 정도 볼 수 있음
import matplotlib.pyplot as plt
import os
import numpy as np
class ResidualBlock(nn.Module):
def __init__(self, n_ch, pre_activation=False):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(n_ch, n_ch, kernel_size=3, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(n_ch) # 배치노말라이제이션 채널마다 해줌 배치노말라이제이션은 가우시안 그림 변하는 것으로 설명했었음 너무 왜곡되지 않게
self.act = nn.ReLU(inplace=True) # ReLU는 웨이트가 없음.
# 인플레이스 True 는 함수 통과한 애가 통과하기 전과 메모리 공간이 같은것 (메모리 아끼는데 쓰는듯)
self.conv2 = nn.Conv2d(n_ch, n_ch, kernel_size=3, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(n_ch)
self.pre_activation = True if pre_activation else False
# self. ~~ 해준 이유는 forward 에서 쓰기위해.
def forward(self, x):
if self.pre_activation:
y = self.bn1(x)
y = self.act(y)
y = self.conv1(y)
y = self.bn2(y)
y = self.act(y)
y = self.conv2(y)
return x + y
else:
y = self.conv1(x)
y = self.bn1(y)
y = self.act(y)
y = self.conv2(y)
y = self.bn2(y)
return self.act(x + y)
class ResidualNetwork(nn.Module):
def __init__(self, pre_activation=False):
super(ResidualNetwork, self).__init__()
# self.conv1 = nn.Conv2d(3,16,kernel_size=3,padding=1,bias=False)
# self.bn1 = nn.BatchNorm2d(16)
# self.act = nn.ReLU(True)
#
# self.rb1 = ResidualBlock(16)
# self.rb2 = ResidualBlock(16)
#
# self.conv2 = nn.Conv2d(16,32,kernel_size=3,padding=1,stride=2,biad=False)
# self.bn2 = nn.BatchNorm2d(32)
#
# self.rb3 = ResidualBlock(32)
# self.rb4 = ResidualBlock(32)
#
# self.conv3 = nn.Conv2d(32, 64, kernel_size=3, padding=1,stride=2 ,biad=False)
# self.bn3 = nn.BatchNorm2d(64)
#
# self.rb5 = ResidualBlock(64)
# self.rb6 = ResidualBlock(64)
#
# self.avg_pool = nn.AdaptiveAvgPool2d((1,1))
# self.linear = nn.Linear(64, 100)
network = [nn.Conv2d(1, 16, kernel_size=3, padding=1, bias=False)]
if not pre_activation:
network += [nn.BatchNorm2d(16),
nn.ReLU(True)]
network += [ResidualBlock(16, pre_activation=pre_activation),
ResidualBlock(16, pre_activation=pre_activation),
nn.Conv2d(16, 32, kernel_size=3, padding=1, stride=2, bias=False),
nn.BatchNorm2d(32),
nn.ReLU(True),
ResidualBlock(32, pre_activation=pre_activation),
ResidualBlock(32, pre_activation=pre_activation),
nn.Conv2d(32, 64, kernel_size=3, padding=1, stride=2, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(True),
ResidualBlock(64, pre_activation=pre_activation),
ResidualBlock(64, pre_activation=pre_activation)]
if pre_activation:
network += [nn.BatchNorm2d(64),
nn.ReLU(True)]
network += [nn.AdaptiveAvgPool2d((1, 1)), # Bxcx1x1
View(64),
nn.Linear(64, 10)] # Bxc
self.network = nn.Sequential(*network) # 위의 network 처럼 해주면 class 안에 주석처리해준 것을 한 꼴이 됨.
print(self) # 모델 확인용 프린트
# network = []
# network += [nn.Conv2d(1,16,kernel_size=3,padding=1,bias=False), # 맨 처음 채널이 1인 것은 MNIST 가 흑백이미지라서
# # nn.BatchNorm2d(16),
# # nn.ReLU(True),
# ResidualBlock(16, pre_activation=True),
# ResidualBlock(16),
# nn.Conv2d(16, 32, kernel_size=3, padding=1,stride=2, bias=False),
# nn.BatchNorm2d(32),
# nn.ReLU(True),
# ResidualBlock(32),
# ResidualBlock(32),
# nn.Conv2d(32, 64, kernel_size=3, padding=1, stride=2, bias=False),
# nn.BatchNorm2d(64),
# nn.ReLU(True),
# ResidualBlock(64),
# ResidualBlock(64),
# nn.BatchNorm2d(64), #추가
# nn.ReLU(True), #추가
# nn.AdaptiveAvgPool2d((1,1)), # 64x64x1x1
# View((64)),#64x64x1x1 >> 64x64 로 만들어줌. (2차원으로 넣어줘야 하기때문에)
# #Sequential 로 쓰려면 View 클래스를 정의해줘야함.
# nn.Linear(64,10)] #64x10 # 지금 MNIST 로 하기때문에 64,10
def forward(self, x):
return self.network(x)
# x= self.conv1(x)
# x= self.bn1(x)
# x= self.act(x)
#
# x= self.rb1(x)
# x= self.rb2(x)
#
# x = self.conv2(x)
# x = self.bn2(x)
# x = self.act(x)
#
# x = self.rb3(x)
# x = self.rb4(x)
#
# x = self.conv3(x)
# x = self.bn3(x)
# x = self.act(x)
#
# x = self.rb5(x)
# x = self.rb6(x)
#
# return x
class View(nn.Module):
def __init__(self, *shape):
super(View, self).__init__()
self.shape = shape
def forward(self, x):
return x.view(x.shape[0], *self.shape) # 0번째는 배치 디멘션 #64x64x1x1 >> 64x64