-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
241 lines (202 loc) · 9.85 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import argparse
from pathlib import Path
from copy import deepcopy
import torch
import numpy as np
from tqdm import tqdm
from torch.cuda import amp
from dataloader import build_dataloader, mixup
from model import build_model
from loss import build_criterion
from evaluator import Evaluator
from val import validate, save_result
from utils.args import build_parser
from utils.general import (print_args, init_seeds, AverageMeter,
TQDM_BAR_FORMAT, report_per_class)
from utils.torch_utils import (build_optimizer, build_scheduler, ModelEMA,
model_info, time_sync)
from utils.evolve import ParamSearcher
ROOT = Path(__file__).resolve().parents[0]
def train_one_epoch(loader, model, criterion, optimizer, device, **kwargs):
pbar = tqdm(enumerate(loader), total=len(loader), bar_format=TQDM_BAR_FORMAT)
nw = kwargs.get('nw')
no_amp = kwargs.get('no_amp')
epoch = kwargs.get('epoch')
num_epochs = kwargs.get('num_epochs')
model_ema = kwargs.get('model_ema')
scaler = kwargs.get('scaler')
scheduler = kwargs.get('scheduler')
batch_size = kwargs.get('batch_size')
lf = kwargs.get('lf')
momentum = kwargs.get('momentum')
mixup_alpha = kwargs.get('mixup_alpha')
epoch_time = kwargs.get('epoch_time')
batch_time = kwargs.get('batch_time')
total_loss = kwargs.get('total_loss')
box_loss = kwargs.get('box_loss')
cls_loss = kwargs.get('cls_loss')
dfl_loss = kwargs.get('dfl_loss')
warmup_bias_lr = 0.1
warmup_momentum = 0.8
batch_time.reset()
total_loss.reset()
box_loss.reset()
cls_loss.reset()
dfl_loss.reset()
model.train()
optimizer.zero_grad()
t1 = time_sync()
for i, batch in pbar:
t2 = time_sync()
ni = i + len(loader) * (epoch - 1)
if ni <= nw:
xi = [0, nw]
for j, x in enumerate(optimizer.param_groups):
x['lr'] = np.interp(ni, xi, [warmup_bias_lr if j == 0 else 0.0, x['initial_lr'] * lf(epoch - 1)])
if 'momentum' in x:
x['momentum'] = np.interp(ni, xi, [warmup_momentum, momentum])
images, targets = batch[0].to(device, non_blocking=True), batch[1]
images, targets = mixup(inputs=images, targets=targets, alpha=mixup_alpha)
with amp.autocast(enabled=not no_amp):
preds = model(images)
tot_loss, loss = criterion(preds=preds, targets=targets)
total_loss.update(tot_loss.item() / batch_size, images.size(0))
box_loss.update(loss[0].item(), images.size(0))
cls_loss.update(loss[1].item(), images.size(0))
dfl_loss.update(loss[2].item(), images.size(0))
scaler.scale(tot_loss).backward()
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0)
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
if model_ema:
model_ema.update_parameters(model)
batch_time.update(time_sync() - t2)
mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G'
pbar.set_description(('%15s' + '%14s' + '%14.4g' * 6) %
(f'{epoch}/{num_epochs}', mem, epoch_time.val, batch_time.val,
total_loss.avg, box_loss.avg, cls_loss.avg, dfl_loss.avg))
scheduler.step()
epoch_time.update(time_sync() - t1)
del images, targets, preds
torch.cuda.empty_cache()
def train(opt, device):
seed = getattr(opt, 'seed')
dataset = getattr(opt, 'dataset')
arch = getattr(opt, 'arch')
img_size = getattr(opt, 'img_size')
lr = getattr(opt, 'lr')
batch_size = getattr(opt, 'batch_size')
class_list = getattr(opt, 'class_list')
momentum = getattr(opt, 'momentum')
weight_decay = getattr(opt, 'weight_decay')
lr_decay = getattr(opt, 'lr_decay')
num_epochs = getattr(opt, 'num_epochs')
no_amp = getattr(opt, 'no_amp')
cos_lr = getattr(opt, 'cos_lr')
warmup = getattr(opt, 'warmup')
project_dir = getattr(opt, 'project_dir')
weight_dir = getattr(opt, 'weight_dir')
evolve = getattr(opt, 'evolve')
is_ema = getattr(opt, 'model_ema')
mixup_alpha = getattr(opt, 'mixup_alpha')
close_mosaic = getattr(opt, 'close_mosaic')
conf_thres = getattr(opt, 'conf_thres')
nms_thres = getattr(opt, 'nms_thres')
eval_file = getattr(opt, 'val_file')
scratch = getattr(opt, 'scratch')
nbs = 64 # nominal batch size
accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing
weight_decay *= batch_size * accumulate / nbs # scale weight_decay
init_seeds(seed + 1, deterministic=True)
train_loader, val_loader = build_dataloader(opt=opt)
model = build_model(arch_name=arch, num_classes=len(class_list))
if not evolve:
model_info(model=model, input_size=img_size)
if not scratch and Path(f'./pretrained/{arch}.pt').exists():
print(f'Start training from pretrained {arch} model...')
pretrained = torch.load(f'./pretrained/{arch}.pt', map_location='cpu')
model.load_state_dict(pretrained['state_dict'], strict=False)
criterion = build_criterion(model=model, device=device)
optimizer = build_optimizer(model=model, lr=lr, momentum=momentum, weight_decay=weight_decay)
scheduler, lf = build_scheduler(optimizer=optimizer, cos_lr=cos_lr, lr_decay=lr_decay, num_epochs=num_epochs)
scaler = amp.GradScaler(enabled=not no_amp)
evaluator = Evaluator(annoFile=eval_file)
model.to(device)
nw = max(round(warmup * len(train_loader)), 100)
model_ema = ModelEMA(model=model) if is_ema else None
start_epoch = 1
epoch_time = AverageMeter('Epoch', ':5.3f')
batch_time = AverageMeter('Batch', ':5.3f')
total_loss = AverageMeter('TotalLoss', ':5.4f')
box_loss = AverageMeter('BoxLoss', ':5.4f')
cls_loss = AverageMeter('ClsLoss', ':5.4f')
dfl_loss = AverageMeter('DflLoss', ':5.4f')
best_epoch, best_ap, best_ap50, best_ap75, best_aps, best_apm, best_apl = [0] * 7
for epoch in range(start_epoch, num_epochs + 1):
print(('\n' + '%15s' + '%14s' * 7) % ('Epoch', 'GPU_mem', 'Time/Epoch', 'Time/Batch',
'Total_Loss', 'Box_Loss', 'Cls_Loss', 'Dfl_Loss'))
if (epoch - 1) == (num_epochs - close_mosaic):
train_loader.dataset.transform.close_mosaic()
train_one_epoch(loader=train_loader, model=model, criterion=criterion, optimizer=optimizer,
device=device, nw=nw, no_amp=no_amp, epoch=epoch, num_epochs=num_epochs,
model_ema=model_ema, scaler=scaler, scheduler=scheduler, batch_size=batch_size,
lf=lf, momentum=momentum, mixup_alpha=mixup_alpha, epoch_time=epoch_time,
batch_time=batch_time, total_loss=total_loss, box_loss=box_loss,
cls_loss=cls_loss, dfl_loss=dfl_loss)
if epoch > warmup:
val_model = deepcopy(model_ema) if model_ema else deepcopy(model)
summ_result, class_result = validate(loader=val_loader, model=val_model,
evaluator=evaluator, device=device,
conf_thres=conf_thres, nms_thres=nms_thres,
class_list=class_list)
if not evolve:
keys = ('Epoch', 'AP@50:95', 'AP@50', 'AP75', 'AP@S', 'AP@M', 'AP@L')
vals = (epoch, *summ_result[:6])
save_result(keys=keys, vals=vals, save_dir=project_dir)
save_obj = {}
save_obj.update(dataset=dataset,
arch=arch,
img_size=img_size,
class_list=class_list,
model_state=val_model.state_dict())
if model_ema:
save_obj.update(model_state = val_model.module.state_dict())
torch.save(save_obj, weight_dir / 'last.pt')
if summ_result[0] > best_ap:
best_result = deepcopy(class_result)
best_epoch, best_ap, best_ap50, best_ap75, best_aps, best_apm, best_apl = \
epoch, *summ_result[:6]
torch.save(save_obj, weight_dir / 'best.pt')
if not evolve:
report_per_class(save_dir=project_dir, src=best_result, filename='train_eval_per_class.csv')
print()
print(('%15s' + '%14s' * 7) % ('Final', 'Best Epoch', 'AP@50:95', 'AP@50',
'AP@75', 'AP@S', 'AP@M', 'AP@L'))
print(('%15s' + '%14i' + '%14.4g' * 6) % ('Result', best_epoch, best_ap, best_ap50,
best_ap75, best_aps, best_apm, best_apl))
return best_ap, best_ap50, best_ap75, best_aps, best_apm, best_apl
def main(opt, device):
print_args(opt, exclude_keys=('class_list', 'project_dir', 'weight_dir',
'evolve_dir', 'result_dir', 'ckpt_path', 'test_dir'))
device = torch.device(device)
if not opt.evolve:
_ = train(opt, device)
else:
searcher = ParamSearcher(save_dir=opt.evolve_dir)
for _ in range(opt.evolve):
hyp = {k: vars(opt)[k] for k in list(searcher.params.keys())}
searcher.run(hyp=hyp)
opt = argparse.Namespace(**dict(vars(opt), **hyp))
results = train(opt, device)
keys = ('AP@50:95', 'AP@50', 'AP@75', 'AP@S', 'AP@M', 'AP@L')
searcher.write_results(hyp=hyp, keys=keys, results=results)
print(f'Hyperparameter evolution finished {opt.evolve} generations\n'
f"Results saved to '{opt.evolve_dir}'.")
if __name__ == "__main__":
try:
opt, _ = build_parser(root_dir=ROOT)
main(opt=opt, device='cuda')
except Exception as e:
raise RuntimeError(e)