-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathem_clustering.py
31 lines (26 loc) · 1.02 KB
/
em_clustering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
from sklearn.mixture import GaussianMixture
import pandas as pd
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
simData = pd.read_csv('./simulation.scaled.csv', ',')
ks = simData['KS']
bbgp = simData['BBGP']
gcmh = simData['GCMH']
name = simData['2L_POS']
feature = pd.concat([bbgp, ks, gcmh], axis=1)
for n in range(2, 500):
model = GaussianMixture(n_components=n, covariance_type='full', init_params='random')
model.fit(feature)
predict =pd.DataFrame(model.predict(feature))
predict.columns = ['predict']
result = pd.concat([name, feature, predict], axis=1)
result.to_csv('./em.full/GaussianMixture' + str(n) + '.csv')
fig = plt.figure()
ax = Axes3D(fig)
ax.scatter(xs=result['KS'], ys=result['BBGP'], zs = result['GCMH'], c = result['predict'], s=10, alpha=0.5, edgecolor='none')
ax.set_xlabel('X-axis')
ax.set_ylabel('Y-axis')
ax.set_zlabel('Z-axis')
plt.savefig('./em.full/EM_CLUSTERING_KS_BBGP_GCMH_' + str(n) + '.png')
plt.close(fig)