Skip to content

Latest commit

 

History

History
67 lines (49 loc) · 1.73 KB

README.md

File metadata and controls

67 lines (49 loc) · 1.73 KB

Adversarially Guided Actor-Critic (AGAC)

This repository contains an implementation of AGAC, as introduced in Adversarially Guided Actor-Critic (ICLR 2021).

This is the original TensorFlow implementation.
Find the PyTorch implementation here.

Installation

# create a new conda environment
conda create -n agac python=3.7
conda activate agac 

# install dependencies
git clone [email protected]:yfletberliac/adversarially-guided-actor-critic.git
cd adversarially-guided-actor-critic
pip install -r requirements.txt

Train AGAC on MiniGrid

python run_minigrid.py

Train AGAC on Vizdoom

(follow Vizdoom install first)

python run_vizdoom.py

Vizdoom install

Ubuntu

sudo apt-get install cmake libboost-all-dev libgtk2.0-dev libsdl2-dev python-numpy
pip install -e git://github.com/yfletberliac/vizdoomgym.git#egg=vizdoomgym

macOS

brew install cmake boost sdl2
pip install vizdoom==1.1.8
pip install pyglet==1.5.11 -e git://github.com/yfletberliac/vizdoomgym.git#egg=vizdoomgym

Citation

@inproceedings{
flet-berliac2021adversarially,
title={Adversarially Guided Actor-Critic},
author={Yannis Flet-Berliac and Johan Ferret and Olivier Pietquin and Philippe Preux and Matthieu Geist},
booktitle={International Conference on Learning Representations},
year={2021},
}

Acknowledgements

The code is an adaptation of Stable Baselines.
Thank you to @cibeah for the PyTorch implementation.