Skip to content

Latest commit

 

History

History
68 lines (49 loc) · 1.69 KB

README.md

File metadata and controls

68 lines (49 loc) · 1.69 KB

Korvus x Firecrawl Example

This example application demonstrates how to perform web crawling, semantic search, and Retrieval-Augmented Generation (RAG) using Korvus and Firecrawl.

Features

  • Web crawling using Firecrawl
  • Semantic search over crawled content
  • RAG (Retrieval-Augmented Generation) for question answering

Prerequisites

  • Python 3.7+
  • Firecrawl API key
  • PostgresML database URL

Installation

  1. Clone this repository:

    git clone https://github.com/postgresml/example-korvus-firecrawl
    cd example-korvus-firecrawl
    
  2. Install the required packages:

    pip install -r requirements.txt
    
  3. Create a .env file in the project root and add your credentials:

    FIRECRAWL_API_KEY=your_firecrawl_api_key
    KORVUS_DATABASE_URL=your_postgresml_database_url
    CRAWL_URL=https://example.com
    CRAWL_LIMIT=100
    

Usage

The application supports three main actions: crawl, search, and rag.

  1. Crawl a website:

    python main.py crawl
    
  2. Perform semantic search:

    python main.py search
    
  3. Use RAG for question answering:

    python main.py rag
    

For search and RAG, you'll be prompted to enter queries. Type 'q' to quit the input loop.

How it works

  1. The application uses Firecrawl to crawl the specified website and extract markdown content.
  2. Crawled data is processed and stored using Korvus.
  3. Semantic search allows you to find relevant documents based on your queries.
  4. RAG combines retrieved context with a language model to answer questions.

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.