-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy patheval_idd_bdd.py
185 lines (144 loc) · 6.29 KB
/
eval_idd_bdd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# Adapted from torchvision, changes made to support evaluation on idd and bdd100k
import pickle
import time
from coco_eval import CocoEvaluator
from coco_utils import get_coco_api_from_dataset
from datasets.bdd import *
from datasets.idd import *
from imports import *
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
########################### User Defined settings ########################
ds = "BDD"
bdd_path = "/home/jupyter/autonue/data/bdd100k/"
batch_size = 8
model_name = "bdd100k_24.pth"
idd_path = "/home/jupyter/autonue/data/IDD_Detection/"
# name = 'do_ft_trained_bdd_eval_idd_ready.pth'
use_checkpoint = False
################################ Dataset and Dataloader Management ##########################################
print("Loading files")
if ds == "IDD":
print("Evaluation on India Driving dataset")
with open("datalists/idd_images_path_list.txt", "rb") as fp:
idd_image_path_list = pickle.load(fp)
with open("datalists/idd_anno_path_list.txt", "rb") as fp:
idd_anno_path_list = pickle.load(fp)
val_img_paths = []
with open(idd_path + "val.txt") as f:
val_img_paths = f.readlines()
for i in range(len(val_img_paths)):
val_img_paths[i] = val_img_paths[i].strip("\n")
val_img_paths[i] = val_img_paths[i] + ".jpg"
val_img_paths[i] = os.path.join(idd_path + "JPEGImages", val_img_paths[i])
val_anno_paths = []
for i in range(len(val_img_paths)):
val_anno_paths.append(val_img_paths[i].replace("JPEGImages", "Annotations"))
val_anno_paths[i] = val_anno_paths[i].replace(".jpg", ".xml")
val_img_paths, val_anno_paths = sorted(val_img_paths), sorted(val_anno_paths)
assert len(val_img_paths) == len(val_anno_paths)
# val_img_paths = val_img_paths[:10]
# val_anno_paths = val_anno_paths[:10]
val_dataset = IDD_Test(val_img_paths, val_anno_paths)
val_dl = torch.utils.data.DataLoader(
val_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=4,
collate_fn=utils.collate_fn,
)
if ds == "BDD":
print("Evaluation on Berkeley Deep Drive")
root_img_path = os.path.join(bdd_path, "bdd100k_images_100k", "images", "100k")
root_anno_path = os.path.join(bdd_path, "bdd100k_labels_release", "labels")
val_img_path = root_img_path + "/val/"
val_anno_json_path = root_anno_path + "/bdd100k_labels_images_val.json"
with open("datalists/bdd100k_val_images_path.txt", "rb") as fp:
bdd_img_path_list = pickle.load(fp)
val_dataset = BDD(bdd_img_path_list, val_anno_json_path)
val_dl = torch.utils.data.DataLoader(
val_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=0,
collate_fn=utils.collate_fn,
pin_memory=True,
)
###################################################################################################3
def get_model(num_classes):
model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=False)
in_features = model.roi_heads.box_predictor.cls_score.in_features
model.roi_heads.box_predictor = torchvision.models.detection.faster_rcnn.FastRCNNPredictor(
in_features, num_classes
) # replace the pre-trained head with a new one
return model.cuda()
ckpt = torch.load("saved_models/ulm_det_ft0.pth")
model = get_model(15)
model.load_state_dict(ckpt["model"])
model_bdd = get_model(12)
ckpt2 = torch.load("saved_models/bdd100k_24.pth")
model_bdd.load_state_dict(ckpt2["model"])
model.roi_heads = model_bdd.roi_heads
model.roi_heads.load_state_dict(model_bdd.roi_heads.state_dict())
model.cuda()
params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(params, lr=0.005, momentum=0.9, weight_decay=0.0005)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=3, gamma=0.1)
if use_checkpoint:
checkpoint = torch.load("saved_models/" + model_name)
model.load_state_dict(checkpoint["model"])
print("Model Loaded successfully")
def _get_iou_types(model):
model_without_ddp = model
if isinstance(model, torch.nn.parallel.DistributedDataParallel):
model_without_ddp = model.module
iou_types = ["bbox"]
return iou_types
print("##### Dataloader is ready #######")
iou_types = _get_iou_types(model)
print("Getting coco api from dataset")
coco = get_coco_api_from_dataset(val_dl.dataset)
print("Done")
@torch.no_grad()
def evaluate(model, data_loader, device):
n_threads = torch.get_num_threads()
# FIXME remove this and make paste_masks_in_image run on the GPU
torch.set_num_threads(1)
cpu_device = torch.device("cpu")
model.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
header = "Test:"
model.cuda()
# coco = get_coco_api_from_dataset(data_loader.dataset)
iou_types = _get_iou_types(model)
coco_evaluator = CocoEvaluator(coco, iou_types)
for image, targets in metric_logger.log_every(data_loader, 100, header):
# print(image)
# image = torchvision.transforms.ToTensor()(image[0]) # Returns a scaler tuple
# print(image.shape) # dim of image 1080x1920
image = torchvision.transforms.ToTensor()(image[0]).to(device)
# image = img.to(device) for img in image
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
torch.cuda.synchronize()
model_time = time.time()
outputs = model([image])
outputs = [{k: v.to(cpu_device) for k, v in t.items()} for t in outputs]
model_time = time.time() - model_time
res = {
target["image_id"].item(): output
for target, output in zip(targets, outputs)
}
evaluator_time = time.time()
coco_evaluator.update(res)
evaluator_time = time.time() - evaluator_time
metric_logger.update(model_time=model_time, evaluator_time=evaluator_time)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
coco_evaluator.synchronize_between_processes()
# accumulate predictions from all images
coco_evaluator.accumulate()
coco_evaluator.summarize()
torch.set_num_threads(n_threads)
return coco_evaluator
print("Evaluation in progress")
evaluate(model, val_dl, device=device)