forked from akavel/polyclip-go
-
Notifications
You must be signed in to change notification settings - Fork 1
/
geom.go
224 lines (193 loc) · 6.23 KB
/
geom.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
// Copyright (c) 2011 Mateusz Czapliński (Go port)
// Copyright (c) 2011 Mahir Iqbal (as3 version)
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
// based on http://code.google.com/p/as3polyclip/ (MIT licensed)
// and code by Martínez et al: http://wwwdi.ujaen.es/~fmartin/bool_op.html (public domain)
// Package polyclip provides implementation of algorithm for Boolean operations on 2D polygons.
// For further details, consult the description of Polygon.Construct method.
package polyclip
import "math"
type Point struct {
X, Y float64
}
// Equals returns true if both p1 and p2 describe exactly the same point.
func (p1 Point) Equals(p2 Point) bool {
return p1.X == p2.X && p1.Y == p2.Y
}
// Length returns distance from p to point (0, 0).
func (p Point) Length() float64 {
return math.Sqrt(p.X*p.X + p.Y*p.Y)
}
type Rectangle struct {
Min, Max Point
}
func (r1 Rectangle) union(r2 Rectangle) Rectangle {
return Rectangle{
Min: Point{
X: math.Min(r1.Min.X, r2.Min.X),
Y: math.Min(r1.Min.Y, r2.Min.Y),
},
Max: Point{
X: math.Max(r1.Max.X, r2.Max.X),
Y: math.Max(r1.Max.Y, r2.Max.Y),
}}
}
// Overlaps returns whether r1 and r2 have a non-empty intersection.
func (r1 Rectangle) Overlaps(r2 Rectangle) bool {
return r1.Min.X <= r2.Max.X && r1.Max.X >= r2.Min.X &&
r1.Min.Y <= r2.Max.Y && r1.Max.Y >= r2.Min.Y
}
// Used to represent an edge of a polygon.
type segment struct {
start, end Point
}
// Contour represents a sequence of vertices connected by line segments, forming a closed shape.
type Contour []Point
// Add is a convenience method for appending a point to a contour.
func (c *Contour) Add(p Point) {
*c = append(*c, p)
}
// BoundingBox finds minimum and maximum coordinates of points in a contour.
func (c Contour) BoundingBox() Rectangle {
bb := Rectangle{}
bb.Min.X = math.Inf(1)
bb.Min.Y = math.Inf(1)
bb.Max.X = math.Inf(-1)
bb.Max.Y = math.Inf(-1)
for _, p := range c {
if p.X > bb.Max.X {
bb.Max.X = p.X
}
if p.X < bb.Min.X {
bb.Min.X = p.X
}
if p.Y > bb.Max.Y {
bb.Max.Y = p.Y
}
if p.Y < bb.Min.Y {
bb.Min.Y = p.Y
}
}
return bb
}
func (c Contour) segment(index int) segment {
if index == len(c)-1 {
return segment{c[len(c)-1], c[0]}
}
return segment{c[index], c[index+1]}
// if out-of-bounds, we expect panic detected by runtime
}
// Checks if a point is inside a contour using the "point in polygon" raycast method.
// This works for all polygons, whether they are clockwise or counter clockwise,
// convex or concave.
// See: http://en.wikipedia.org/wiki/Point_in_polygon#Ray_casting_algorithm
// Returns true if p is inside the polygon defined by contour.
func (c Contour) Contains(p Point) bool {
// Cast ray from p.x towards the right
intersections := 0
for i := range c {
curr := c[i]
ii := i + 1
if ii == len(c) {
ii = 0
}
next := c[ii]
// Is the point out of the edge's bounding box?
// bottom vertex is inclusive (belongs to edge), top vertex is
// exclusive (not part of edge) -- i.e. p lies "slightly above
// the ray"
bottom, top := curr, next
if bottom.Y > top.Y {
bottom, top = top, bottom
}
if p.Y < bottom.Y || p.Y >= top.Y {
continue
}
// Edge is from curr to next.
if p.X >= math.Max(curr.X, next.X) ||
next.Y == curr.Y {
continue
}
// Find where the line intersects...
xint := (p.Y-curr.Y)*(next.X-curr.X)/(next.Y-curr.Y) + curr.X
if curr.X != next.X && p.X > xint {
continue
}
intersections++
}
return intersections%2 != 0
}
// Clone returns a copy of a contour.
func (c Contour) Clone() Contour {
return append([]Point{}, c...)
}
// Polygon is carved out of a 2D plane by a set of (possibly disjoint) contours.
// It can thus contain holes, and can be self-intersecting.
type Polygon []Contour
// NumVertices returns total number of all vertices of all contours of a polygon.
func (p Polygon) NumVertices() int {
num := 0
for _, c := range p {
num += len(c)
}
return num
}
// BoundingBox finds minimum and maximum coordinates of points in a polygon.
func (p Polygon) BoundingBox() Rectangle {
bb := p[0].BoundingBox()
for _, c := range p[1:] {
bb = bb.union(c.BoundingBox())
}
return bb
}
// Add is a convenience method for appending a contour to a polygon.
func (p *Polygon) Add(c Contour) {
*p = append(*p, c)
}
// Clone returns a duplicate of a polygon.
func (p Polygon) Clone() Polygon {
r := Polygon(make([]Contour, len(p)))
for i := range p {
r[i] = p[i].Clone()
}
return r
}
// Op describes an operation which can be performed on two polygons.
type Op int
const (
UNION Op = iota
INTERSECTION
DIFFERENCE
XOR
)
// Construct computes a 2D polygon, which is a result of performing
// specified Boolean operation on the provided pair of polygons (p <Op> clipping).
// It uses algorithm described by F. Martínez, A. J. Rueda, F. R. Feito
// in "A new algorithm for computing Boolean operations on polygons"
// - see: http://wwwdi.ujaen.es/~fmartin/bool_op.html
// The paper describes the algorithm as performing in time O((n+k) log n),
// where n is number of all edges of all polygons in operation, and
// k is number of intersections of all polygon edges.
func (p Polygon) Construct(operation Op, clipping Polygon) Polygon {
c := clipper{
subject: p,
clipping: clipping,
}
return c.compute(operation)
}