-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
138 lines (100 loc) · 4.07 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import argparse
import os
from torch.utils.data import DataLoader
from torchvision import transforms
from torch.optim import Adam
import torch
import imageio
import numpy as np
import math
import sys
from load_data import LoadData, LoadVisualData
from msssim import MSSSIM
from model import PyNET, Trans
from vgg import vgg_19, VGG16_perceptual
from utils import normalize_batch, process_command_args
import eagerpy as ep
from foolbox import PyTorchModel, accuracy, samples
import foolbox.attacks as fa
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
from torch.optim import Adam
import numpy as np
import torchvision.models as models
import matplotlib.pyplot as plt
import torchvision.datasets as datasets
import torchattacks
from wrapper import *
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--command',
help = "peform training or inference")
parser.add_argument('--data_path',
default = '/scratch/gpfs/yz8614/raw_images/Imagenet/',
help = "dataset path for evaluation")
parser.add_argument('--mode',
default = 'val',
help = "train, validation or test")
parser.add_argument('--batch_size',
default = 32,
help = "Inference batch size")
parser.add_argument('--device',
default = '0',
help = "device number")
parser.add_argument('--pt',
default = 2,
help="Maximum Perturbation Allowed")
parser.add_argument('--no_imsave',
default = True,
help = "Store adversarial image in memory instead of locally")
parser.add_argument('--encoder_path',
default = 'ckpt/encoder.pt',
help = "model weight for encoder (mapping from RGB to Raw)")
parser.add_argument('--decoder_path',
default = 'ckpt/decoder.pt',
help = "model weight for decoder (mapping from RAW to RGB)")
parser.add_argument('--fast_training',
default = False,
help = "For best performance please follow the training strategy described in the paper; If you want to perform fast training to save time, change this parameter to True")
parser.add_argument('--level',
default = 1)
parser.add_argument('--lr',
default = 0.001)
parser.add_argument('--decoder_lr',
default = 0.00001)
parser.add_argument('--epoch',
default = 100)
parser.add_argument('--instance_norm',
default = True)
parser.add_argument('--residual',
default = False)
parser.add_argument('--pin_memory',
default = True)
parser.add_argument('--instance_norm_level_1',
default = True)
parser.add_argument('--use_percept',
default = False)
parser.add_argument('--train_encoder',
default = False)
parser.add_argument('--visual',
default = True)
parser.add_argument('--decoder_epoch',
default = 10)
parser.add_argument('--train_dataset_dir',
default = '/scratch/gpfs/yz8614/raw_images/',
help = "dataset path for training (containing the raw and rgb data)")
args = parser.parse_args()
model = Model(args)
if args.command == 'eval':
model.defense_eval()
elif args.command == 'train_decoder':
model.train_decoder_fast()
elif args.command == 'train_encoder':
model.train_encoder()
else:
print('error: command not recognized')