-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathmainEval.py
187 lines (154 loc) · 7.46 KB
/
mainEval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
from torch.utils import data
from torch import optim
import torchvision.models as models
from torch.autograd import Variable
import torchvision as tv
import random
import math
import time
from datetime import datetime
import os
import argparse
import subprocess
from util.LFUtil import *
import numpy as np
from networks.LFMNet import LFMNet
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True
# Arguments
parser = argparse.ArgumentParser()
# Image indices to use for training and validation
parser.add_argument('--imagesToUse', nargs='+', type=int, default=list(range(0,15,1)))
# GPUs to use
parser.add_argument('--GPUs', nargs='+', type=int, default=[0])
# Path to dataset
parser.add_argument('--datasetPath', nargs='?', default="BrainLFMConfocalDataset/Brain_40x_64Depths_362imgs.h5")
# Path to directory where models and tensorboard logs are stored
parser.add_argument('--outputPath', nargs='?', default="eval/runsMouse/")
# Path to model to use for testing
parser.add_argument('--checkpointPath', nargs='?', default="runs/2020_10_11__14:23:21_TrueB_0.1bias_5I_128BS_FalseSk_9FOV_3nT_0.03ths_a8d9a2c_commit_")
# File to use
parser.add_argument('--checkpointFileName', nargs='?', default="model_130")
# Write volumes to H5 file
parser.add_argument('--writeVolsToH5', type=str2bool, default=False)
# Write output to tensorboard
parser.add_argument('--writeToTB', type=str2bool, default=True)
argsTest = parser.parse_args()
nImgs = len(argsTest.imagesToUse)
# Setup multithreading
num_workers = 0
if not torch.cuda.is_available():
print("GPU initialization error")
exit(-1)
# Select GPUs to use
argsTest.GPUs = list(range(torch.cuda.device_count())) if argsTest.GPUs is None else argsTest.GPUs
print('Using GPUs: ' + str(argsTest.GPUs))
# Load checkpoint if provided
if argsTest.checkpointPath is not None:
checkpointPath = argsTest.checkpointPath + "/" + argsTest.checkpointFileName
checkpoint = torch.load(checkpointPath)
# overwrite args
argsModel = checkpoint['args']
argsModel.checkpointPath = checkpointPath
# set Device to use
device = torch.device("cuda:"+str(argsTest.GPUs[0]) if torch.cuda.is_available() else "cpu")
# Create output folder
save_folder = argsTest.outputPath + argsTest.checkpointPath[:-1].split('/')[1] + "_eval_" + datetime.now().strftime('%Y_%m_%d__%H:%M:%S')
print(save_folder)
# Create summary writer to log stuff
if argsTest.writeToTB:
writer = SummaryWriter(log_dir=save_folder)
# Load dataset
all_data = Dataset(argsTest.datasetPath, argsModel.randomSeed, \
fov=argsModel.fovInput, neighShape=argsModel.neighShape, img_indices=argsTest.imagesToUse, get_full_imgs=True, center_region=None)
# Create data loader
test_dataset = data.DataLoader(all_data, batch_size=1,
shuffle=False, num_workers=num_workers, pin_memory=True)
# Get Dataset information
nDepths = all_data.get_n_depths()
volShape, LFshape = all_data.__shape__()
LFshape = LFshape[0:4]
lateralTile = int(math.sqrt(nDepths))
# Find normalization values
maxInputTrain, maxVolumeTrain = all_data.get_max()
maxInputTest, maxVolumeTest = all_data.get_max()
# Create network
net = LFMNet(nDepths, argsModel.useBias, argsModel.useSkipCon, LFshape, LFfov=argsModel.fovInput, use_small_unet=argsModel.useShallowUnet).to(device)
lossFunction = nn.L1Loss()
lossFunction.eval()
# Create SSIM criteria
ssim = SSIM()
ssim.eval()
# Start distributed data parallel, as it's faster than DataParallel
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '1234'+str(argsTest.GPUs[0])
torch.distributed.init_process_group(backend="nccl", rank=0, world_size=1) #initialize torch.distributed
# Move network to distributed data parallel
net = nn.parallel.DistributedDataParallel(net, device_ids=argsTest.GPUs, output_device=argsTest.GPUs[0]).to(device)
# Load network from checkpoint
net.load_state_dict(checkpoint['model_state_dict'])
# Move net to single GPU
net = net.module.to("cuda:1")
device = "cuda:1"
# timers
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
print('Testing')
net.eval()
avg_psnr = 0
avg_ssim = 0
avg_loss = 0
avg_time = 0
with torch.no_grad():
# Evaluate images
for nBatch,(inputs,labels) in enumerate(test_dataset):
inputGPU = inputs.float().to(device) / maxInputTest
outputsGT = labels.float().to(device) / maxVolumeTrain
# Threshold GT to get rid of autofluorescence
outputsGT = imadjust(outputsGT,argsModel.ths,outputsGT.max(), outputsGT.min(), outputsGT.max())
start.record()
outputsVol = net(inputGPU)
end.record()
torch.cuda.synchronize()
curr_time = start.elapsed_time(end)
curr_loss = lossFunction(outputsGT,outputsVol).item()
avg_loss += curr_loss / len(test_dataset)
# Compute PSNR
lossMSE = nn.functional.mse_loss(outputsVol.detach(), outputsGT.to(device).detach())
curr_psnr = 10 * math.log10(1 / lossMSE.item())
avg_psnr += curr_psnr / len(test_dataset)
curr_ssim = ssim(outputsVol[:,0,:,:,:].permute(0,3,1,2).contiguous().detach(), outputsGT[:,0,:,:,:].permute(0,3,1,2).contiguous().to(device).detach()).sum().item()
avg_ssim += curr_ssim / len(test_dataset)
avg_time += curr_time / len(test_dataset)
if argsTest.writeVolsToH5:
h5file = h5py.File(save_folder+"/ReconVol_"+argsTest.checkpointFileName+'_'+str(nBatch+min(argsTest.imagesToUse))+".h5", 'w')
h5file.create_dataset("LF4D", data=inputGPU.detach().cpu().squeeze().numpy())
h5file.create_dataset("LFimg", data=LF2Spatial(inputGPU, inputGPU.shape[2:]).squeeze().cpu().detach().numpy())
h5file.create_dataset("GT", data=outputsGT.detach().cpu().squeeze().numpy())
h5file.create_dataset("reconFull", data=outputsVol.detach().cpu().squeeze().numpy())
h5file.close()
if argsTest.writeToTB:
curr_it = nBatch
lastBatchSize = 1
gridOut2 = torch.cat((outputsGT[0:lastBatchSize, :, :, :, :].sum(2).cpu().data.detach(), outputsVol[0:lastBatchSize, :, :, :, :].sum(2).cpu().data.detach()), dim=0)
gridOut2 = tv.utils.make_grid(gridOut2, normalize=True, scale_each=False)
LFImage = LF2Spatial(inputGPU, inputGPU.shape[2:])
writer.add_image('images_val_YZ_projection', gridOut2, curr_it)
z_proj = outputsGT[0,:,:,:,:].sum(3)
writer.add_image('z_proj_GT',(z_proj/z_proj.max()).detach().cpu(),curr_it)
z_proj = outputsVol[0,:,:,:,:].sum(3)
writer.add_image('z_proj_prediction',(z_proj/z_proj.max()).detach().cpu(),curr_it)
writer.add_image('LFImage_in', LFImage[0,:,:,:], curr_it)
writer.add_scalar('Loss/test', curr_loss, curr_it)
writer.add_scalar('Loss/psnr', curr_psnr, curr_it)
writer.add_scalar('Loss/ssim', curr_ssim, curr_it)
writer.add_scalar('times/val', curr_time, curr_it)
print('Img: ' + str(nBatch) + '/' + str(len(test_dataset)) + " L1: " + str(curr_loss) + " psnr: " + str(curr_psnr) + " SSIM: " + str(curr_ssim) + " recon_time: " + str(curr_time))
print("avg_loss: " + str(avg_loss) + " avg_psnr: " + str(avg_psnr) + " avg_ssim: " + str(avg_ssim) + " avg_time: " + str(avg_time) + "ms")
writer.close()