-
Notifications
You must be signed in to change notification settings - Fork 34
/
dA.py
435 lines (344 loc) · 15.1 KB
/
dA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
"""
This tutorial introduces denoising auto-encoders (dA) using Theano.
Denoising autoencoders are the building blocks for SdA.
They are based on auto-encoders as the ones used in Bengio et al. 2007.
An autoencoder takes an input x and first maps it to a hidden representation
y = f_{\theta}(x) = s(Wx+b), parameterized by \theta={W,b}. The resulting
latent representation y is then mapped back to a "reconstructed" vector
z \in [0,1]^d in input space z = g_{\theta'}(y) = s(W'y + b'). The weight
matrix W' can optionally be constrained such that W' = W^T, in which case
the autoencoder is said to have tied weights. The network is trained such
that to minimize the reconstruction error (the error between x and z).
For the denosing autoencoder, during training, first x is corrupted into
\tilde{x}, where \tilde{x} is a partially destroyed version of x by means
of a stochastic mapping. Afterwards y is computed as before (using
\tilde{x}), y = s(W\tilde{x} + b) and z as s(W'y + b'). The reconstruction
error is now measured between z and the uncorrupted input x, which is
computed as the cross-entropy :
- \sum_{k=1}^d[ x_k \log z_k + (1-x_k) \log( 1-z_k)]
References :
- P. Vincent, H. Larochelle, Y. Bengio, P.A. Manzagol: Extracting and
Composing Robust Features with Denoising Autoencoders, ICML'08, 1096-1103,
2008
- Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle: Greedy Layer-Wise
Training of Deep Networks, Advances in Neural Information Processing
Systems 19, 2007
"""
import os
import sys
import time
import numpy
import theano
import theano.tensor as T
import theano.sandbox.linalg as TL
from theano.tensor.shared_randomstreams import RandomStreams
from logistic_sgd import load_data
from utils import tile_raster_images
try:
import PIL.Image as Image
except ImportError:
import Image
# start-snippet-1
class dA(object):
"""Denoising Auto-Encoder class (dA)
A denoising autoencoders tries to reconstruct the input from a corrupted
version of it by projecting it first in a latent space and reprojecting
it afterwards back in the input space. Please refer to Vincent et al.,2008
for more details. If x is the input then equation (1) computes a partially
destroyed version of x by means of a stochastic mapping q_D. Equation (2)
computes the projection of the input into the latent space. Equation (3)
computes the reconstruction of the input, while equation (4) computes the
reconstruction error.
.. math::
\tilde{x} ~ q_D(\tilde{x}|x) (1)
y = s(W \tilde{x} + b) (2)
x = s(W' y + b') (3)
L(x,z) = -sum_{k=1}^d [x_k \log z_k + (1-x_k) \log( 1-z_k)] (4)
"""
def __init__(
self,
numpy_rng,
theano_rng=None,
input=None,
n_visible=784,
n_hidden=500,
W=None,
bhid=None,
bvis=None
):
"""
Initialize the dA class by specifying the number of visible units (the
dimension d of the input ), the number of hidden units ( the dimension
d' of the latent or hidden space ) and the corruption level. The
constructor also receives symbolic variables for the input, weights and
bias. Such a symbolic variables are useful when, for example the input
is the result of some computations, or when weights are shared between
the dA and an MLP layer. When dealing with SdAs this always happens,
the dA on layer 2 gets as input the output of the dA on layer 1,
and the weights of the dA are used in the second stage of training
to construct an MLP.
:type numpy_rng: numpy.random.RandomState
:param numpy_rng: number random generator used to generate weights
:type theano_rng: theano.tensor.shared_randomstreams.RandomStreams
:param theano_rng: Theano random generator; if None is given one is
generated based on a seed drawn from `rng`
:type input: theano.tensor.TensorType
:param input: a symbolic description of the input or None for
standalone dA
:type n_visible: int
:param n_visible: number of visible units
:type n_hidden: int
:param n_hidden: number of hidden units
:type W: theano.tensor.TensorType
:param W: Theano variable pointing to a set of weights that should be
shared belong the dA and another architecture; if dA should
be standalone set this to None
:type bhid: theano.tensor.TensorType
:param bhid: Theano variable pointing to a set of biases values (for
hidden units) that should be shared belong dA and another
architecture; if dA should be standalone set this to None
:type bvis: theano.tensor.TensorType
:param bvis: Theano variable pointing to a set of biases values (for
visible units) that should be shared belong dA and another
architecture; if dA should be standalone set this to None
"""
self.n_visible = n_visible
self.n_hidden = n_hidden
# create a Theano random generator that gives symbolic random values
if not theano_rng:
theano_rng = RandomStreams(numpy_rng.randint(2 ** 30))
# note : W' was written as `W_prime` and b' as `b_prime`
if not W:
# W is initialized with `initial_W` which is uniformely sampled
# from -4*sqrt(6./(n_visible+n_hidden)) and
# 4*sqrt(6./(n_hidden+n_visible))the output of uniform if
# converted using asarray to dtype
# theano.config.floatX so that the code is runable on GPU
initial_W = numpy.asarray(
numpy_rng.uniform(
low=-4 * numpy.sqrt(6. / (n_hidden + n_visible)),
high=4 * numpy.sqrt(6. / (n_hidden + n_visible)),
size=(n_visible, n_hidden)
),
dtype=theano.config.floatX
)
W = theano.shared(value=initial_W, name='W', borrow=True)
if not bvis:
bvis = theano.shared(
value=numpy.zeros(
n_visible,
dtype=theano.config.floatX
),
borrow=True
)
if not bhid:
bhid = theano.shared(
value=numpy.zeros(
n_hidden,
dtype=theano.config.floatX
),
name='b',
borrow=True
)
self.W = W
# b corresponds to the bias of the hidden
self.b = bhid
# b_prime corresponds to the bias of the visible
self.b_prime = bvis
# tied weights, therefore W_prime is W transpose
self.W_prime = self.W.T
self.theano_rng = theano_rng
# if no input is given, generate a variable representing the input
if input is None:
# we use a matrix because we expect a minibatch of several
# examples, each example being a row
self.x = T.dmatrix(name='input')
else:
self.x = input
self.params = [self.W, self.b, self.b_prime]
# end-snippet-1
def get_corrupted_input(self, input, corruption_level):
"""This function keeps ``1-corruption_level`` entries of the inputs the
same and zero-out randomly selected subset of size ``coruption_level``
Note : first argument of theano.rng.binomial is the shape(size) of
random numbers that it should produce
second argument is the number of trials
third argument is the probability of success of any trial
this will produce an array of 0s and 1s where 1 has a
probability of 1 - ``corruption_level`` and 0 with
``corruption_level``
The binomial function return int64 data type by
default. int64 multiplicated by the input
type(floatX) always return float64. To keep all data
in floatX when floatX is float32, we set the dtype of
the binomial to floatX. As in our case the value of
the binomial is always 0 or 1, this don't change the
result. This is needed to allow the gpu to work
correctly as it only support float32 for now.
"""
# Corruption Noise
#noise = self.theano_rng.binomial(size=input.shape, n=1,
# p=1 - corruption_level,
# dtype=theano.config.floatX) * input
#noise = self.theano_rng.normal(size=input.shape)*(corruption_level) + input
noise = self.theano_rng.normal(avg=0.0,std=corruption_level,size=input.shape) + input
return T.clip(noise,0,1)
def get_hidden_values(self, input):
""" Computes the values of the hidden layer """
return T.nnet.sigmoid(T.dot(input, self.W) + self.b)
def get_reconstructed_input(self, hidden):
"""Computes the reconstructed input given the values of the
hidden layer
"""
return T.nnet.sigmoid(T.dot(hidden, self.W_prime) + self.b_prime)
def get_cost_updates(self, corruption_level, learning_rate):
""" This function computes the cost and the updates for one trainng
step of the dA """
tilde_x = self.get_corrupted_input(self.x, corruption_level)
y = self.get_hidden_values(tilde_x)
z = self.get_reconstructed_input(y)
# note : we sum over the size of a datapoint; if we are using
# minibatches, L will be a vector, with one entry per
# example in minibatch
#L = - T.sum(self.x * T.log(z) + (1 - self.x) * T.log(1 - z), axis=1)
# Implementation of cost function from the paper
lambda_reg = 0.00001
beta = 0.01
rho = 0.2
# ---- Error Term
l2norm = T.sqrt(((self.x-z)**2).sum(axis=0,keepdims=False))**2
errorterm = T.mean(l2norm)
# ---- KL Divergence Term
rho_j = T.mean(y,axis=0,keepdims=False) #Mean activation of hidden units based on hidden layer, results in 1 x HU matrix/vector
kl = rho*T.log(rho/rho_j) + (1-rho)*T.log((1-rho)/(1-rho_j))
kl = T.sum(kl)
#T.sum((rho_expression),keepdims=False)
# ---- Regularization Term
regterm = (T.sqrt((self.W ** 2).sum())**2) + (T.sqrt((self.W_prime ** 2).sum())**2)
# ---- Final Loss Function
cost = errorterm + beta*kl + lambda_reg/2 * regterm
# compute the gradients of the cost of the `dA` with respect
# to its parameters
gparams = T.grad(cost, self.params)
# generate the list of updates
updates = [
(param, param - learning_rate * gparam)
for param, gparam in zip(self.params, gparams)
]
return (cost, updates)
def test_dA(learning_rate=0.1, training_epochs=15,
dataset='mnist.pkl.gz',
batch_size=20, output_folder='dA_plots'):
"""
This demo is tested on MNIST
:type learning_rate: float
:param learning_rate: learning rate used for training the DeNosing
AutoEncoder
:type training_epochs: int
:param training_epochs: number of epochs used for training
:type dataset: string
:param dataset: path to the picked dataset
"""
datasets = load_data(dataset)
train_set_x, train_set_y = datasets[0]
# compute number of minibatches for training, validation and testing
n_train_batches = train_set_x.get_value(borrow=True).shape[0] / batch_size
# allocate symbolic variables for the data
index = T.lscalar() # index to a [mini]batch
x = T.matrix('x') # the data is presented as rasterized images
if not os.path.isdir(output_folder):
os.makedirs(output_folder)
os.chdir(output_folder)
####################################
# BUILDING THE MODEL NO CORRUPTION #
####################################
rng = numpy.random.RandomState(123)
theano_rng = RandomStreams(rng.randint(2 ** 30))
da = dA(
numpy_rng=rng,
theano_rng=theano_rng,
input=x,
n_visible=28 * 28,
n_hidden=500
)
cost, updates = da.get_cost_updates(
corruption_level=0.,
learning_rate=learning_rate
)
train_da = theano.function(
[index],
cost,
updates=updates,
givens={
x: train_set_x[index * batch_size: (index + 1) * batch_size]
}
)
start_time = time.clock()
############
# TRAINING #
############
# go through training epochs
for epoch in xrange(training_epochs):
# go through trainng set
c = []
for batch_index in xrange(n_train_batches):
c.append(train_da(batch_index))
print 'Training epoch %d, cost ' % epoch, numpy.mean(c)
end_time = time.clock()
training_time = (end_time - start_time)
print >> sys.stderr, ('The no corruption code for file ' +
os.path.split(__file__)[1] +
' ran for %.2fm' % ((training_time) / 60.))
image = Image.fromarray(
tile_raster_images(X=da.W.get_value(borrow=True).T,
img_shape=(28, 28), tile_shape=(10, 10),
tile_spacing=(1, 1)))
image.save('filters_corruption_0.png')
#####################################
# BUILDING THE MODEL CORRUPTION 30% #
#####################################
rng = numpy.random.RandomState(123)
theano_rng = RandomStreams(rng.randint(2 ** 30))
da = dA(
numpy_rng=rng,
theano_rng=theano_rng,
input=x,
n_visible=28 * 28,
n_hidden=500
)
cost, updates = da.get_cost_updates(
corruption_level=0.3,
learning_rate=learning_rate
)
train_da = theano.function(
[index],
cost,
updates=updates,
givens={
x: train_set_x[index * batch_size: (index + 1) * batch_size]
}
)
start_time = time.clock()
############
# TRAINING #
############
# go through training epochs
for epoch in xrange(training_epochs):
# go through trainng set
c = []
for batch_index in xrange(n_train_batches):
c.append(train_da(batch_index))
print 'Training epoch %d, cost ' % epoch, numpy.mean(c)
end_time = time.clock()
training_time = (end_time - start_time)
print >> sys.stderr, ('The 30% corruption code for file ' +
os.path.split(__file__)[1] +
' ran for %.2fm' % (training_time / 60.))
image = Image.fromarray(tile_raster_images(
X=da.W.get_value(borrow=True).T,
img_shape=(28, 28), tile_shape=(10, 10),
tile_spacing=(1, 1)))
image.save('filters_corruption_30.png')
os.chdir('../')
if __name__ == '__main__':
test_dA()