forked from rishabh1b/RealTimePathPlanning
-
Notifications
You must be signed in to change notification settings - Fork 4
/
SamplingMotionPlanning.cpp
595 lines (518 loc) · 14.2 KB
/
SamplingMotionPlanning.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
#include "SMP.h"
#include "RRTstar.h"
#include "InformedRRTstar.h"
#include "simulationParam.h"
#include "RT-RRTstar.h"
bool SMP::goalFound = false;
bool SMP::sampledInGoalRegion = false;
bool SMP::moveNow = false;
bool InformedRRTstar::usingInformedRRTstar = false;
bool RTRRTstar::goalDefined = false;
ofVec2f SMP::goal;
ofVec2f SMP::start;
Nodes* SMP::target = NULL;
Nodes* SMP::nextTarget = NULL;
Nodes* SMP::root = NULL;
std::set<Nodes*, nodes_compare> RTRRTstar::visited_set;
SMP::SMP()
{
}
void SMP::addNode(Nodes n, std::list<Nodes>& nodes)
{
nodes.push_back(n);
if (n.location.distance(goal) < converge)
{
goalFound = true;
sampledInGoalRegion = true;
target = &(nodes.back());
}
}
Nodes* SMP::nearestNode(Nodes n, std::list<Nodes>& nodes)
{
double min_dist = n.location.squareDistance(nodes.front().location);
Nodes* near_node = &(nodes.front());
if (!nodes.empty())
{
std::list<Nodes>::iterator it = nodes.begin();
while (it != nodes.end())
{
if (n.location.squareDistance((*it).location) < min_dist)
{
min_dist = n.location.squareDistance((*it).location);
near_node = &(*it);
}
it++;
}
return near_node;
}
else
return NULL;
}
Nodes* SMP::nearestNode(Nodes n, std::list<Nodes*>& nodes)
{
double min_dist = n.location.squareDistance(nodes.front()->location);
Nodes* near_node = nodes.front();
if (!nodes.empty())
{
std::list<Nodes*>::iterator it = nodes.begin();
while (it != nodes.end())
{
if (n.location.squareDistance((*it)->location) < min_dist)
{
min_dist = n.location.squareDistance((*it)->location);
near_node = *it;
}
it++;
}
return near_node;
}
else
return NULL;
}
Nodes SMP::sampler()
{
float x = ofRandom(0, ofGetWindowWidth());
float y = ofRandom(0, ofGetWindowHeight());
Nodes new_node;
new_node.location.x = x;
new_node.location.y = y;
return new_node;
}
bool SMP::checkCollision(Nodes n1, Nodes n2, list<obstacles*> obst)
{
for (auto i : obst) {
if (i->isCollide(n1.location, n2.location)) return false;
}
return true;
}
bool SMP::checkSample(Nodes n, list<obstacles*> obst)
{
for (auto i : obst) {
if (i->isInside(n.location)) return false;
}
return true;
}
void RRTstar::nextIter(std::list<Nodes>& nodes,list<obstacles*> obst, Nodes* u_)
{
Nodes u;
if (u_ == NULL)
u = SMP::sampler();
else
u = *u_;
Nodes* v = SMP::nearestNode(u, nodes);
double dist = u.location.distance((*v).location);
if (dist > epsilon)
{
float x_n = v->location.x + (u.location.x - v->location.x) * epsilon / dist;
float y_n = v->location.y + (u.location.y - v->location.y) * epsilon / dist;
u.location.x = x_n;
u.location.y = y_n;
}
if (!SMP::checkSample(u, obst)) return;
std::list<Nodes*> closestNeighbours;
closestNeighbours = RRTstar::findClosestNeighbours(u, nodes);
if (closestNeighbours.empty()) return;
std::list<Nodes*>::iterator it = closestNeighbours.begin();
std::list<Nodes*> safeNeighbours;
while (it != closestNeighbours.end())
{
if (SMP::checkCollision(u, *(*it), obst))
safeNeighbours.push_back(*it);
it++;
}
if (safeNeighbours.empty()) return;
it = safeNeighbours.begin();
float minDist = (*it)->costToStart + u.location.distance((*it)->location);
auto index = it;
while (it != safeNeighbours.end())
{
float dist = (*it)->costToStart + u.location.distance((*it)->location);
if (dist < minDist) {
minDist = dist;
index = it;
}
it++;
}
u.parent = *index;
u.costToStart = minDist;
SMP::addNode(u, nodes);
safeNeighbours.remove(*index);
// Bring the iterator to initial position again
it = safeNeighbours.begin();
while (it != safeNeighbours.end())
{
float dist = u.costToStart + u.location.distance((*it)->location);
if ((*it)->costToStart > dist)
{
(*it)->prevParent = (*it)->parent;
(*it)->parent = &(nodes.back());
(*it)->costToStart = dist;
}
it++;
}
}
std::list<Nodes*> RRTstar::findClosestNeighbours(Nodes u, std::list<Nodes>& nodes)
{
std::list<Nodes*> closestNeighbours;
std::list<Nodes>::iterator it = nodes.begin();
/*float rrtstarradius = std::sqrt((ofGetWindowWidth() * ofGetWindowHeight() * maxNeighbours) / (3.146 * nodes.size()));
if (rrtstarradius < minDistClosestNode)
rrtstarradius = minDistClosestNode;*/
while (it != nodes.end())
{
float f = u.location.distance(it->location);
if (f < rrtstarradius && f > 0.0001)
{
closestNeighbours.push_back(&(*it));
}
it++;
}
return closestNeighbours;
}
void InformedRRTstar::nextIter(std::list<Nodes> &nodes, std::list<obstacles*> obst)
{
if (sol_nodes.empty())
{
RRTstar::nextIter(nodes, obst);
}
else
{
float min_cost = sol_nodes.front()->costToStart;
std::list<Nodes*>::iterator it = sol_nodes.begin();
while (it != sol_nodes.end())
{
if ((*it)->costToStart < min_cost)
{
min_cost = (*it)->costToStart;
SMP::target = *it;
}
it++;
}
RRTstar::nextIter(nodes, obst, &InformedRRTstar::sample(min_cost));
}
if (SMP::sampledInGoalRegion)
sol_nodes.push_back(&nodes.back());
}
Nodes InformedRRTstar::sample(float c_max)
{
float c_min = SMP::goal.distance(SMP::start);
if (std::abs(c_max - c_min) < 100 && usingInformedRRTstar) //Putting a dummy value for now - Robot might not move for some configurations with this value
SMP::moveNow = true; //TODO: The flag will be associated with time. Should turn on when the spcified time lapses
ofVec2f x_centre = (SMP::start + SMP::goal) / 2;
ofVec2f dir = SMP::goal - SMP::start;
dir = dir.getNormalized();
float angle = std::atan2(-dir.y, dir.x); //Frame is with y pointing downwards
float r1 = c_max / 2;
float r2 = std::sqrt(std::pow(c_max, 2) - std::pow(c_min, 2)) / 2;
float x = ofRandom(-1, 1);
float y = ofRandom(-1, 1);
float x2 = x * r1 * std::cos(angle) + y * r2 * std::sin(angle);
float y2 = -x * r1 * std::sin(angle) + y * r2 * std::cos(angle);
ofVec2f rot_sample, rot_trans_sample;
rot_sample.set(x2, y2);
rot_trans_sample = rot_sample + x_centre;
Nodes n;
n.location.x = rot_trans_sample.x;
n.location.y = rot_trans_sample.y;
return n;
}
void RTRRTstar::nextIter(std::list<Nodes> &nodes, const std::list<obstacles*>& obst, Robot* agent)
{
timeKeeper = ofGetElapsedTimef();
expandAndRewire(nodes, obst);
if (SMP::goalFound)
updateNextBestPath();
if (currPath.size() > 1 && agent->getLocation().distance(SMP::root->location) < 0.1)
{
//We have to pre-increment rather than post-increment
Nodes* nextPoint = *((++currPath.begin())); //Change the DS for path to vector?
changeRoot(nextPoint, nodes);
RTRRTstar::visited_set.clear();
pushedToRewireRoot.clear();
rewireRoot.clear();
}
closestNeighbours.clear();
}
void RTRRTstar::changeRoot(Nodes* nextPoint, std::list<Nodes>& nodes)
{
nextPoint->children.push_back(SMP::root);
nextPoint->parent = NULL;
nextPoint->prevParent = NULL;
nextPoint->costToStart = 0;
SMP::root->parent = nextPoint;
SMP::root->costToStart = SMP::root->location.distance(nextPoint->location);
SMP::root = nextPoint;
}
void RTRRTstar::expandAndRewire(std::list<Nodes>& nodes, const std::list<obstacles*>& obst)
{
Nodes u = sample();
Nodes* v = RTRRTstar::getClosestNeighbour(u, nodes);
double dist = u.location.distance((*v).location);
if (dist > epsilon)
{
float x_n = v->location.x + (u.location.x - v->location.x) * epsilon / dist;
float y_n = v->location.y + (u.location.y - v->location.y) * epsilon / dist;
u.location.x = x_n;
u.location.y = y_n;
}
if (!SMP::checkSample(u, obst)) return;
if (SMP::checkCollision(u, *v, obst))
{
if (this->closestNeighbours.size() < maxNeighbours)//u.location.distance(v->location) > minDistClosestNode)
{
this->addNode(u, v, nodes, obst);
}
else
{
this->rewireRand.push_front(v);
}
rewireRandomNode(obst, nodes);
}
rewireFromRoot(obst, nodes);
}
void RTRRTstar::updateNextBestPath()
{
std::list<Nodes*> updatedPath;
Nodes *pathNode = target;
if (SMP::goalFound) {
do
{
currPath.push_back(pathNode);
pathNode = pathNode->parent;
} while (pathNode != NULL);
currPath.reverse();
return;
}
else {
if (!goalDefined)
return;
Nodes* curr_node = SMP::root;
while (!curr_node->children.empty())
{
std::list<Nodes*>::iterator it = curr_node->children.begin();
Nodes* tempNode = curr_node->children.front();
float cost_ = cost(tempNode);
float minCost = cost_ + getHeuristic(*it);
while (it != curr_node->children.end()) {
cost_ = cost(*it);
float cost_new = cost_ + getHeuristic(*it);
if (cost_new < minCost) {
minCost = cost_new;
tempNode = *it;
}
it++;
}
updatedPath.push_back(tempNode);
if (tempNode->children.empty() || cost(tempNode) == inf)
{
visited_set.insert(tempNode);
break;
}
curr_node = tempNode;
}
if (currPath.size() == 0)
currPath.push_back(SMP::root);
if (updatedPath.back()->location.distance(SMP::goal) < currPath.back()->location.distance(SMP::goal))
currPath = updatedPath;
}
}
Nodes RTRRTstar::sample()
{
float rand_num = ofRandom(0, 1);
if (rand_num > 1 - alpha && SMP::target != NULL)
{
float x = ofRandom(SMP::root->location.x, SMP::target->location.x);
float y = ofRandom(SMP::root->location.y, SMP::target->location.y);
Nodes new_node;
new_node.location.x = x;
new_node.location.y = y;
return new_node;
}
else if (rand_num >= (1 - alpha) / beta && SMP::goalFound)
{
return InformedRRTstar::sample(cost(SMP::target));
}
else
{
return SMP::sampler();
}
}
Nodes* RTRRTstar::getClosestNeighbour(Nodes u, std::list<Nodes>& nodes) //Using all the nodes for the time being
{
double min_dist = u.location.squareDistance(nodes.front().location);
Nodes* near_node = &(nodes.front());
std::list<Nodes>::iterator it = nodes.begin();
/*float rrtstarradius = std::sqrt((ofGetWindowWidth() * ofGetWindowHeight() * maxNeighbours) / (3.146 * nodes.size()));
if (rrtstarradius < minDistClosestNode)
rrtstarradius = minDistClosestNode;*/
while (it != nodes.end())
{
float dist = u.location.squareDistance((*it).location);
if (dist < min_dist)
{
min_dist = dist;
near_node = &(*it);
}
if (u.location.distance(it->location) < rrtstarradius)
{
closestNeighbours.push_back(&(*it));
}
it++;
}
return near_node;
}
void RTRRTstar::addNode(Nodes n, Nodes* closest, std::list<Nodes>& nodes, const std::list<obstacles*>& obst)
{
Nodes* parent = closest;
float c_min = cost(closest) + n.location.distance(closest->location);
std::list<Nodes*>::iterator it = (this->closestNeighbours).begin();
float c_new;
while (it != closestNeighbours.end())
{
c_new = cost(*it) + n.location.distance((*it)->location);
if (c_new < c_min && SMP::checkCollision(n, *(*it), obst))
{
c_min = c_new;
parent = *it;
n.costToStart = c_min;
}
it++;
}
n.parent = parent;
nodes.push_back(n);
parent->children.push_back(&(nodes.back()));
if (n.location.distance(SMP::goal) < converge)
{
if (SMP::target == NULL || (SMP::target != NULL && SMP::target->costToStart > n.costToStart))
{
SMP::target = &(nodes.back());
}
SMP::goalFound = true;
}
//TODO: Add the node to the Grid based/KD-Tree Data structure
this->rewireRand.push_front(&(nodes.back()));
}
float RTRRTstar::cost(Nodes* node)
{
bool badNode = false;
float cost_ = 0;
Nodes* curr = node;
while (curr->parent != NULL)
{
if (curr->parent->costToStart == inf)
{
node->costToStart = inf;
badNode = true;
break;
}
cost_ += curr->location.distance(curr->parent->location);
curr = curr->parent;
}
if (badNode)
return inf;
else
{
node->costToStart = cost_;
return cost_;
}
}
void RTRRTstar::rewireRandomNode(const list<obstacles*> &obst, std::list<Nodes> &nodes)
{
while (!rewireRand.empty() && (ofGetElapsedTimef() - timeKeeper) < 0.5 * allowedTimeRewiring)
{
Nodes* Xr = rewireRand.front();
rewireRand.pop_front();
std::list<Nodes*> nearNodes = RRTstar::findClosestNeighbours(*Xr, nodes);
std::list<Nodes*>::iterator it = nearNodes.begin();
std::list<Nodes*> safeNeighbours;
while (it != nearNodes.end())
{
if (SMP::checkCollision(*Xr, *(*it), obst))
safeNeighbours.push_back(*it);
it++;
}
if (safeNeighbours.empty()) continue;
it = safeNeighbours.begin();
float cost_ = cost(Xr);
while (it != safeNeighbours.end())
{
float oldCost = cost(*it);
float newCost = cost_ + Xr->location.distance((*it)->location);
if (newCost < oldCost)
{
(*it)->prevParent = (*it)->parent;
(*it)->parent->children.remove(*it);
(*it)->parent = Xr;
(*it)->costToStart = newCost;
Xr->children.push_back(*it);
rewireRand.push_back(*it);
}
it++;
}
}
}
void RTRRTstar::rewireFromRoot(const list<obstacles*> &obst, std::list<Nodes> &nodes) {
if (rewireRoot.empty()) {
rewireRoot.push_back(SMP::root);
}
while (!rewireRoot.empty() && (ofGetElapsedTimef() - timeKeeper) < allowedTimeRewiring)
{
Nodes* Xs = rewireRoot.front();
rewireRoot.pop_front();
std::list<Nodes*> nearNeighbours;
nearNeighbours = RRTstar::findClosestNeighbours(*Xs, nodes);
std::list<Nodes*>::iterator it = nearNeighbours.begin();
std::list<Nodes*> safeNeighbours;
while (it != nearNeighbours.end())
{
if (SMP::checkCollision(*Xs, *(*it), obst))
safeNeighbours.push_back(*it);
it++;
}
if (safeNeighbours.empty()) continue;
safeNeighbours.remove(Xs->parent);
it = safeNeighbours.begin();
while (it != safeNeighbours.end()) {
float oldCost = cost(*it);
float newCost = cost(Xs) + Xs->location.distance((*it)->location);
if (newCost < oldCost) {
(*it)->prevParent = (*it)->parent;
(*it)->parent->children.remove(*it);
(*it)->parent = Xs;
(*it)->costToStart = newCost;
Xs->children.push_back(*it);
}
//TODO: take care of restarting the queue part
bool found = std::find(pushedToRewireRoot.begin(), pushedToRewireRoot.end(), (*it)) != pushedToRewireRoot.end();
if (!found) {
rewireRoot.push_back((*it));
pushedToRewireRoot.push_back((*it));
}
it++;
}
}
}
float RTRRTstar::getHeuristic(Nodes* u) {
if (visited_set.find(u) != visited_set.end())
return inf;
else
return u->location.distance(SMP::goal);
}
//method not used
bool RTRRTstar::isPathToGoalAvailable()
{
if (!SMP::goalFound)
return false;
std::list<Nodes*> tempPath = currPath;
tempPath.reverse();
Nodes* curr = tempPath.front();
while (curr->parent != NULL)
{
if (curr->parent->costToStart == inf)
{
return false;
}
curr = curr->parent;
}
return true;
}