-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathComparison_demo.m
490 lines (465 loc) · 18.9 KB
/
Comparison_demo.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
% clear all;
% close all;
% clc;
% addpath ./PROPACK
% addpath ./prox_operators
addpath ./data
addpath ./assess_fold
%% real data experiment
% load 'Indian_145_220';
% load 'hypercube166_200';
% load 'URBAN_200_307';
% load urban
% OriData3 = urban;
% [M N p] = size(OriData3);
% oriData3_noise = OriData3;
%% simulated experiment
%----------------------------------------------load image---------------------------------------------------------
nSigrange = [10,30,50,100];
for ii=1:4
nSig = nSigrange(ii)/255
% MSI
% load('toy');OriData3 = msi/255;
% noiselevel = nSig*ones(1,31); % for case 1
% Pavia
load Pavia_80.mat
noiselevel = nSig*ones(1,80); % for case 1
% OriData3 = OriData3(1:100,1:100,:); % we scale the spatial size for fast test
% WDC
% load WDC.mat; OriData3 = WDC;
% noiselevel = nSig*ones(1,191); % for case 1
% %----------------------------------------------noise simulated---------------------------------------------------------
oriData3_noise = OriData3;
%
[M N p] = size(OriData3);
% % Gaussian noise
for i =1:p
oriData3_noise(:,:,i)=OriData3(:,:,i) + noiselevel(i)*randn(M,N);
% mixed(vv,:)=addnoise(mixed(vv,:),'mg',ratio);
end
%% choose comparing methods
Comparison_LRTV = 0;
Comparison_LLRSSTV = 0;
Comparison_LRMR = 0;
Comparison_NAIRSVD = 0;
Comparison_TDL = 0;
Comparison_LRTA = 0;
Comparison_PARAFAC = 0;
Comparison_NonLRMA = 0;
Comparison_WSNLRMA =0;
Comparison_SURESVT = 0;
Comparison_SprLr = 0;
Comparison_NLTALSM = 0;
Comparison_HyRes = 0;
Comparison_MTSNMF = 0;
Comparison_LRTR = 0;
Comparison_tSVD = 0;
Comparison_KBR = 0;
Comparison_NMoG = 0;
Comparison_LRRSDS = 0;
Comparison_FastHyDe = 0;
Comparison_LLRT = 0;
Comparison_NGmeet = 1;
%% LRTV denoising
if Comparison_LRTV ==1
tau = 0.005;
lambda =10/sqrt(M*N);
rank =4;
tic;
[ output_image out_value] = LRTV_accelerate(oriData3_noise, tau,lambda, rank);
LRTV_time = toc;
[LRTV_PSNR,LRTV_SSIM,LRTV_SAM,LRTV_MQ] = evaluate(OriData3,output_image,M,N);
disp(['Method Name:LRTV ', ', MPSNR=' num2str(mean(LRTV_PSNR),'%5.2f') ...
',MSSIM = ' num2str(mean(LRTV_SSIM),'%5.4f') ',SAM=' num2str(LRTV_SAM,'%5.2f')...
',MQ=' num2str(mean(LRTV_MQ),'%5.4f') ',Time=' num2str(mean(LRTV_time),'%5.2f')]);
end
%% local low rank combined global 3-D TV (LLRGTV)
if Comparison_LLRSSTV == 1
par.lambda = 0.2;
par.tau = 0.005;
par.r = 3;
par.blocksize = 20;
par.stepsize = 8;
% par.lambda = 5/par.blocksize;
% par.tau = 0.01;
% par.r = 4;
par.maxIter = 40;
par.tol = 1e-6;
tic;
[ output_image, out_value] = LLRGTV(oriData3_noise,OriData3, par);
LLRSSTV_time = toc;
[LLRSSTV_PSNR,LLRSSTV_SSIM,LLRSSTV_SAM,LLRSSTV_MQ] = evaluate(OriData3,output_image,M,N);
disp(['Method Name:LLRSSTV ', ', MPSNR=' num2str(mean(LLRSSTV_PSNR),'%5.2f') ...
',MSSIM = ' num2str(mean(LLRSSTV_SSIM),'%5.4f') ',SAM=' num2str(LLRSSTV_SAM,'%5.2f')...
',MQ=' num2str(mean(LLRSSTV_MQ),'%5.4f') ',Time=' num2str(mean(LLRSSTV_time),'%5.2f')]);
end
%% LRMR
if Comparison_LRMR == 1
r = 3;
slide =20;
% s= 5000;
s = 0.005;
stepsize = 4;
tic
[ output_image ] = LRMR_HSI_denoise( oriData3_noise,r,slide,s,stepsize );
LRMR_time = toc;
[LRMR_PSNR,LRMR_SSIM,LRMR_SAM,LRMR_MQ] = evaluate(OriData3,output_image,M,N);
disp(['Method Name:LRMR ', ', MPSNR=' num2str(mean(LRMR_PSNR),'%5.2f') ...
',MSSIM = ' num2str(mean(LRMR_SSIM),'%5.4f') ',SAM=' num2str(LRMR_SAM,'%5.2f')...
',MQ=' num2str(mean(LRMR_MQ),'%5.4f') ',Time=' num2str(mean(LRMR_time),'%5.2f')]);
end
%% NAIRSVD
if Comparison_NAIRSVD == 1;
addpath ./NAIRSVD_public
addpath './NAIRSVD_public/demo_HySime'
% parameter
blocksize=20;
stepsize=4;
rank=3;
% lambda = 1;
tic;
[output_image,~,~] =NAIRLMA_denosing(oriData3_noise,oriData3_noise,blocksize,stepsize,1); %NAIRSVD
NAILRMA_time =toc;
[NAILRMA_PSNR,NAILRMA_SSIM,NAILRMA_SAM,NAILRMA_MQ] = evaluate(OriData3,output_image,M,N);
disp(['Method Name:NAILRMA ', ', MPSNR=' num2str(mean(NAILRMA_PSNR),'%5.2f') ...
',MSSIM = ' num2str(mean(NAILRMA_SSIM),'%5.4f') ',SAM=' num2str(NAILRMA_SAM,'%5.2f')...
',MQ=' num2str(mean(NAILRMA_MQ),'%5.4f') ',Time=' num2str(mean(NAILRMA_time),'%5.2f')]);
end
%% tensor dictionary learning
if Comparison_TDL == 1;
% [oriData3_noise ] = reshape(inexact_alm_rpca(reshape(oriData3_noise,M*N,p)),M,N,p);
addpath(genpath('./tensor_dl'));
% fprintf('Denoising by tensor dictionary learning ...\n');
vstbmtf_params.peak_value = 1;
vstbmtf_params.nsigma = mean(noiselevel);
tic;
output_image = TensorDL(oriData3_noise, vstbmtf_params);
TDL_time =toc;
[TDL_PSNR,TDL_SSIM,TDL_SAM,TDL_MQ] = evaluate(OriData3,output_image,M,N);
disp(['Method Name:TDL ', ', MPSNR=' num2str(mean(TDL_PSNR),'%5.2f') ...
',MSSIM = ' num2str(mean(TDL_SSIM),'%5.4f') ',SAM=' num2str(TDL_SAM,'%5.2f')...
',MQ=' num2str(mean(TDL_MQ),'%5.4f') ',Time=' num2str(mean(TDL_time),'%5.2f')]);
disTDL = OriData3-output_image;
rmpath('./tensor_dl')
end
%% LRTA
if Comparison_LRTA == 1;
tic;
output_image = double(LRTA(tensor(oriData3_noise)));
LRTA_time = toc;
[LRTA_PSNR,LRTA_SSIM,LRTA_SAM,LRTA_MQ] = evaluate(OriData3,output_image,M,N);
disp(['Method Name:LRTA ', ', MPSNR=' num2str(mean(LRTA_PSNR),'%5.2f') ...
',MSSIM = ' num2str(mean(LRTA_SSIM),'%5.4f') ',SAM=' num2str(LRTA_SAM,'%5.2f')...
',MQ=' num2str(mean(LRTA_MQ),'%5.4f') ',Time=' num2str(mean(LRTA_time),'%5.2f')]);
end
%% PARAFAC
if Comparison_PARAFAC == 1;
tic;
% output_image = double(PARAFAC(tensor(oriData3_noise)));
[output_image, k] = PARAFAC(oriData3_noise);
PARAFAC_time = toc;
[PARAFAC_PSNR,PARAFAC_SSIM,PARAFAC_SAM,PARAFAC_MQ] = evaluate(OriData3,output_image,M,N);
disp(['Method Name:PARAFAC ', ', MPSNR=' num2str(mean(PARAFAC_PSNR),'%5.2f') ...
',MSSIM = ' num2str(mean(PARAFAC_SSIM),'%5.4f') ',SAM=' num2str(PARAFAC_SAM,'%5.2f')...
',MQ=' num2str(mean(PARAFAC_MQ),'%5.4f') ',Time=' num2str(mean(PARAFAC_time),'%5.2f')]);
end
%% NonLRMA
if Comparison_NonLRMA == 1;
addpath 'NonLRMA for HSI denoising'
blocksize = 20;
stepsize = 8;
strname = 'Lap';
tic
[ output_image ] = NonLRMA_HSIdenoise( oriData3_noise,blocksize,stepsize,strname);
NonLRMA_time = toc;
[NonLRMA_PSNR,NonLRMA_SSIM,NonLRMA_SAM,NonLRMA_MQ] = evaluate(OriData3,output_image,M,N);
disp(['Method Name:NonLRMA ', ', MPSNR=' num2str(mean(NonLRMA_PSNR),'%5.2f') ...
',MSSIM = ' num2str(mean(NonLRMA_SSIM),'%5.4f') ',SAM=' num2str(NonLRMA_SAM,'%5.2f')...
',MQ=' num2str(mean(NonLRMA_MQ),'%5.4f') ',Time=' num2str(mean(NonLRMA_time),'%5.2f')]);
end
%% WSN-LRMA
if Comparison_WSNLRMA == 1;
addpath 'WSNM_RPCA_p'
params.noiselevel = mean(noiselevel);
tic
[ output_image ] = WSN_LRMA( oriData3_noise, params );
WSNLRMA_time = toc;
[WSNLRMA_PSNR,WSNLRMA_SSIM,WSNLRMA_SAM,WSNLRMA_MQ] = evaluate(OriData3,output_image,M,N);
disp(['Method Name:WSNLRMA ', ', MPSNR=' num2str(mean(WSNLRMA_PSNR),'%5.2f') ...
',MSSIM = ' num2str(mean(WSNLRMA_SSIM),'%5.4f') ',SAM=' num2str(WSNLRMA_SAM,'%5.2f')...
',MQ=' num2str(mean(WSNLRMA_MQ),'%5.4f') ',Time=' num2str(mean(WSNLRMA_time),'%5.2f')]);
end
% [output_image,SURE] = SVD_SURE_denoising(oriData3_noise,OriData3,M,stepsize);
%% SURESVT
if Comparison_SURESVT == 1;
addpath 'SURE'
blocksize = 20;
stepsize = 8;
tic
[output_image,SURE] = SVD_SURE_denoising(oriData3_noise,OriData3,blocksize,stepsize);
SURESVT_time = toc;
[SURESVT_PSNR,SURESVT_SSIM,SURESVT_SAM,SURESVT_MQ] = evaluate(OriData3,output_image,M,N);
disp(['Method Name:SURESVT ', ', MPSNR=' num2str(mean(SURESVT_PSNR),'%5.2f') ...
',MSSIM = ' num2str(mean(SURESVT_SSIM),'%5.4f') ',SAM=' num2str(SURESVT_SAM,'%5.2f')...
',MQ=' num2str(mean(SURESVT_MQ),'%5.4f') ',Time=' num2str(mean(SURESVT_time),'%5.2f')]);
end
%% SprLr
if Comparison_SprLr == 1;
addpath 'LrSr'
addpath 'LrSr/KSVD_Matlab_ToolBox2'
B = 0;
sigma = mean(noiselevel);
tic
output_image=maindenoise(reshape(oriData3_noise,M*N,p),B,sigma); % begin to denoise
output_image = reshape(output_image,M,N,p);
SprLr_time = toc;
[SprLr_PSNR,SprLr_SSIM,SprLr_SAM,SprLr_MQ] = evaluate(OriData3,output_image,M,N);
disp(['Method Name:SprLr ', ', MPSNR=' num2str(mean(SprLr_PSNR),'%5.2f') ...
',MSSIM = ' num2str(mean(SprLr_SSIM),'%5.4f') ',SAM=' num2str(SprLr_SAM,'%5.2f')...
',MQ=' num2str(mean(SprLr_MQ),'%5.4f') ',Time=' num2str(mean(SprLr_time),'%5.2f')]);
end
%% NLTA-LSM # HOSVD
if Comparison_NLTALSM == 1;
addpath 'HOSVD'
addpath 'HOSVD/tptool'
B = 0;
sigma = mean(noiselevel);
tic
output_image = HOSVD_Spect_Denoising( 255*oriData3_noise, 255*oriData3_noise, 255*sigma ); % begin to denoise
output_image=output_image/255;
NLTALSM_time = toc;
[NLTALSM_PSNR,NLTALSM_SSIM,NLTALSM_SAM,NLTALSM_MQ] = evaluate(OriData3,output_image,M,N);
disp(['Method Name:NLTALSM ', ', MPSNR=' num2str(mean(NLTALSM_PSNR),'%5.2f') ...
',MSSIM = ' num2str(mean(NLTALSM_SSIM),'%5.4f') ',SAM=' num2str(NLTALSM_SAM,'%5.2f')...
',MQ=' num2str(mean(NLTALSM_MQ),'%5.4f') ',Time=' num2str(mean(NLTALSM_time),'%5.2f')]);
end
%% HyRes
if Comparison_HyRes == 1;
addpath 'HyRes'
sigma = mean(noiselevel);
tic
[output_image]=HyRes(oriData3_noise);
HyRes_time = toc;
[HyRes_PSNR,HyRes_SSIM,HyRes_SAM,HyRes_MQ] = evaluate(OriData3,output_image,M,N);
disp(['Method Name:HyRes ', ', MPSNR=' num2str(mean(HyRes_PSNR),'%5.2f') ...
',MSSIM = ' num2str(mean(HyRes_SSIM),'%5.4f') ',SAM=' num2str(HyRes_SAM,'%5.2f')...
',MQ=' num2str(mean(HyRes_MQ),'%5.4f') ',Time=' num2str(mean(HyRes_time),'%5.2f')]);
end
%% MTSNMF
if Comparison_MTSNMF == 1;
addpath 'MTSNMF_denoising'
% addpath 'MTSNMF_denoising/private'
sigma = mean(noiselevel);
tic
patch_size=[7,7];
overlap_pixel=2;
% dictionary size
r=round(2.0*prod(patch_size));
% regularization parameter
lambda=sigma*sqrt(2*log(r));
[output_image,A,S]=nmf_denoising(oriData3_noise,patch_size,overlap_pixel,r,lambda);
MTSNMF_time = toc;
[MTSNMF_PSNR,MTSNMF_SSIM,MTSNMF_SAM,MTSNMF_MQ] = evaluate(OriData3,output_image,M,N);
disp(['Method Name:MTSNMF ', ', MPSNR=' num2str(mean(MTSNMF_PSNR),'%5.2f') ...
',MSSIM = ' num2str(mean(MTSNMF_SSIM),'%5.4f') ',SAM=' num2str(MTSNMF_SAM,'%5.2f')...
',MQ=' num2str(mean(MTSNMF_MQ),'%5.4f') ',Time=' num2str(mean(MTSNMF_time),'%5.2f')]);
end
%% LRTR HAIyan Fan
if Comparison_LRTR == 1;
addpath 'LRTRHY'
% addpath(genpath(cd));
addpath LRTRHY/tensor_toolbox
addpath LRTRHY/algorithms
addpath LRTRHY/demo_HySime
addpath LRTRHY/proximal_operator
addpath LRTRHY/tensor_tools
esty = zeros(M*N,p);
tic
for i= 1:p
mid = oriData3_noise(:,:,i);
esty(:,i) = mid(:);
end
esty =esty';
noise_type = 'additive';
verbose ='off';
[w Rn] = estNoise(esty,noise_type,verbose);
Rnvec=diag(Rn);
var=mean(Rnvec);
d=min(M,N);
% temp=n1*n2*n3+sqrt(8*n1*n2*n3);
temp=d*p+sqrt(8*d*p);
temp=temp*var;
temp=sqrt(temp);
temp=temp/10;
temp=temp*10/1.2;
mu1=1/(2*temp)*1;
mu = 1/sqrt(max(M,N)*p);
mu2 = mu*1;
% mu1=sqrt(mu);
opts.max_beta = 6*2*mu1/13;
opts.beta = 1e-4;
opts.tol = 1e-6;
opts.rho = 1.1;
opts.max_iter = 500;
opts.DEBUG = 1;
[output_image, ~,~] = trpca_tnn(oriData3_noise, mu1, mu2, opts);
tic
% % regularization parameter
% lambda=0.1/sqrt(max(M,N)*p);
% [ output_image , ~ ] = tensor_rpca( oriData3_noise , lambda);
LRTR_time = toc;
[LRTR_PSNR,LRTR_SSIM,LRTR_SAM,LRTR_MQ] = evaluate(OriData3,output_image,M,N);
disp(['Method Name:LRTR ', ', MPSNR=' num2str(mean(LRTR_PSNR),'%5.2f') ...
',MSSIM = ' num2str(mean(LRTR_SSIM),'%5.4f') ',SAM=' num2str(LRTR_SAM,'%5.2f')...
',MQ=' num2str(mean(LRTR_MQ),'%5.4f') ',Time=' num2str(mean(LRTR_time),'%5.2f')]);
end
%% tSVD Fanhaiyan the same in KBR/Itg
if Comparison_tSVD == 1;
% if isempty(gcp)
% parpool(4,'IdleTimeout', inf); % If your computer's memory is less than 8G, do not use more than 4 workers.
% end
addpath 'KBR'
addpath(genpath('KBR/lib'));
% addpath 'MTSNMF_denoising/private'
sigma = mean(noiselevel);
memorySaving = 1;
tic
output_image = tSVD_DeNoising(oriData3_noise,sigma, memorySaving);
tSVD_time = toc;
[tSVD_PSNR,tSVD_SSIM,tSVD_SAM,tSVD_MQ] = evaluate(OriData3,output_image,M,N);
disp(['Method Name:tSVD ', ', MPSNR=' num2str(mean(tSVD_PSNR),'%5.2f') ...
',MSSIM = ' num2str(mean(tSVD_SSIM),'%5.4f') ',SAM=' num2str(tSVD_SAM,'%5.2f')...
',MQ=' num2str(mean(tSVD_MQ),'%5.4f') ',Time=' num2str(mean(tSVD_time),'%5.2f')]);
end
%% KBR learn parpool computing PAMI CVPR
if Comparison_KBR == 1;
% if isempty(gcp)
% parpool(4,'IdleTimeout', inf); % If your computer's memory is less than 8G, do not use more than 4 workers.
% end
addpath 'KBR'
addpath(genpath('KBR/lib'));
% addpath 'MTSNMF_denoising/private'
sigma = mean(noiselevel);
memorySaving = 1;
tic
output_image = ITS_DeNoising(oriData3_noise,sigma, memorySaving);
KBR_time = toc;
[KBR_PSNR,KBR_SSIM,KBR_SAM,KBR_MQ] = evaluate(OriData3,output_image,M,N);
disp(['Method Name:KBR ', ', MPSNR=' num2str(mean(KBR_PSNR),'%5.2f') ...
',MSSIM = ' num2str(mean(KBR_SSIM),'%5.4f') ',SAM=' num2str(KBR_SAM,'%5.2f')...
',MQ=' num2str(mean(KBR_MQ),'%5.4f') ',Time=' num2str(mean(KBR_time),'%5.2f')]);
rmpath 'KBR'
disKBR = OriData3-output_image;
% save LBR_pavia.mat output_image
end
%% NMoG-RPCA
if Comparison_NMoG == 1;
addpath 'NMoG_RPCA'
muOn = 0; % muOn = 0: set mu as 0 without updating;
% muOn = 1: update mu in each iteration.
Rank = 6; % objective rank of low rank component
param.initial_rank = 30; % initial rank of low rank component
param.rankDeRate = 7; % the number of rank reduced in each iteration
param.mog_k = 1; % the number of component reduced in each band
param.lr_init = 'SVD';
param.maxiter = 50;
param.tol = 1e-4;
param.display = 0;
tic
[prior, model] = InitialPara(param,muOn,p); % set hyperparameters and initialize model parameters
Y = reshape(oriData3_noise,M*N,p);
[Model,Lr_model] = NMoG_RPCA(Y,Rank,param,model,prior);
U = Lr_model.U;
V = Lr_model.V;
output_image = reshape(U*V',size(OriData3));
NMoG_time = toc;
[NMoG_PSNR,NMoG_SSIM,NMoG_SAM,NMoG_MQ] = evaluate(OriData3,output_image,M,N);
disp(['Method Name:NMoG ', ', MPSNR=' num2str(mean(NMoG_PSNR),'%5.2f') ...
',MSSIM = ' num2str(mean(NMoG_SSIM),'%5.4f') ',SAM=' num2str(NMoG_SAM,'%5.2f')...
',MQ=' num2str(mean(NMoG_MQ),'%5.4f') ',Time=' num2str(mean(NMoG_time),'%5.2f')]);
end
%% LRRSDS
if Comparison_LRRSDS == 1;
addpath 'LRRSDS'
lambda = 0.1; % parameter for low rank regularization
lambda_s = 0.000; % parameter for sparse regularization
Desired_rank = 1;
AL_iter = 80;
tic
[output_image, S, mpsnr_out] = HSI_3D_LowRank_SpectralDifference(oriData3_noise,'MU',0.8, ...
'LAMBDA', lambda,'LAMBDA_S', lambda_s,'DESIRED_RANK',Desired_rank,'AL_ITERS',AL_iter, 'VERBOSE','yes','TRUE_X',OriData3);
LRRSDS_time = toc;
[LRRSDS_PSNR,LRRSDS_SSIM,LRRSDS_SAM,LRRSDS_MQ] = evaluate(OriData3,output_image,M,N);
disp(['Method Name:LRRSDS ', ', MPSNR=' num2str(mean(LRRSDS_PSNR),'%5.2f') ...
',MSSIM = ' num2str(mean(LRRSDS_SSIM),'%5.4f') ',SAM=' num2str(LRRSDS_SAM,'%5.2f')...
',MQ=' num2str(mean(LRRSDS_MQ),'%5.4f') ',Time=' num2str(mean(LRRSDS_time),'%5.2f')]);
end
%% FastHyDe
if Comparison_FastHyDe == 1
noise_type='additive';
iid = 1;
addpath('./FastHyDe/FastHyDe');
addpath('./FastHyDe/BM3D');
addpath('./GLF_demos')
p_subspace =5;
tic
% [output_image, time_fasthyde] = FastHyIn(oriData3_noise,Mlocation, noise_type, iid, p_subspace);
[output_image, FastHyDe_time] = FastHyDe(oriData3_noise, noise_type, iid, p_subspace);
% output_image = GLF_denoiser(oriData3_noise, p_subspace, noise_type) ;
FastHyDe_time = toc;
[FastHyDe_PSNR,FastHyDe_SSIM,FastHyDe_SAM,FastHyDe_MQ] = evaluate(OriData3,output_image,M,N);
disp(['Method Name:FastHyDe ', ', MPSNR=' num2str(mean(FastHyDe_PSNR),'%5.2f') ...
',MSSIM = ' num2str(mean(FastHyDe_SSIM),'%5.4f') ',SAM=' num2str(FastHyDe_SAM,'%5.2f')...
',MQ=' num2str(mean(FastHyDe_MQ),'%5.4f') ',Time=' num2str(mean(FastHyDe_time),'%5.2f')]);
disFastHyDe = OriData3-output_image;
save GLF_toy.mat output
end
%% LLRT
if Comparison_LLRT == 1;
addpath('LLRT')
addpath(genpath('LLRT/Utilize/'));
tic
Par = ParSetC(255*mean(noiselevel),p);
[output_image]= LLRT_DeNoising( 255*oriData3_noise, 255*OriData3, Par); %LLRT denoisng function
LLRT_time = toc;
[LLRT_PSNR,LLRT_SSIM,LLRT_SAM,LLRT_MQ] = evaluate(OriData3,output_image/255,M,N);
disp(['Method Name:LLRT ', ', MPSNR=' num2str(mean(LLRT_PSNR),'%5.2f') ...
',MSSIM = ' num2str(mean(LLRT_SSIM),'%5.4f') ',SAM=' num2str(LLRT_SAM,'%5.2f')...
',MQ=' num2str(mean(LLRT_MQ),'%5.4f') ',Time=' num2str(mean(LLRT_time),'%5.2f')]);
disLLRT = OriData3-output_image/255;
% save LLBR_pavia.mat output_image
end
%% NGmeet
if Comparison_NGmeet == 1;
addpath('NGmeet');
tic
Par = ParSetH(255*mean(noiselevel),p);
[output_image]= NGmeet_DeNoising( 255*oriData3_noise, 255*OriData3, Par); %NGmeet denoisng function
NGmeet_time = toc;
[NGmeet_PSNR,NGmeet_SSIM,NGmeet_SAM,NGmeet_MQ] = evaluate(OriData3,output_image/255,M,N);
disp(['Method Name:NGmeet ', ', MPSNR=' num2str(mean(NGmeet_PSNR),'%5.2f') ...
',MSSIM = ' num2str(mean(NGmeet_SSIM),'%5.4f') ',SAM=' num2str(NGmeet_SAM,'%5.2f')...
',MQ=' num2str(mean(NGmeet_MQ),'%5.4f') ',Time=' num2str(mean(NGmeet_time),'%5.2f')]);
disNSLR = OriData3-output_image/255;
% save NSLR_pavia.mat output_image
end
end
%% plot the dis image
% figure();
% bandnum=40;
% dis=oriData3_noise-OriData3;
% subplot(2,3,1);subimage(1);imagesc(dis(:,:,bandnum)/0.5);xlabel('noise')
% subplot(2,3,2);subimage(2);imagesc(disTDL(:,:,bandnum)/0.5);xlabel('TDL')
% subplot(2,3,3);subimage(3);imagesc(disKBR(:,:,bandnum)/0.5);xlabel('KBR')
% subplot(2,3,4);subimage(4);imagesc(disLLRT(:,:,bandnum)/0.5);xlabel('LLRT')
% subplot(2,3,5);subimage(5);imagesc(disFastHyDe(:,:,bandnum)/0.5);xlabel('FastHyDe')
% subplot(2,3,6);subimage(6);imagesc(disNSLR(:,:,bandnum)/0.5);xlabel('NSLR')
% figure();
% bandnum=40;
% dis=oriData3_noise-OriData3;
% subplot(2,3,1);subimage(1);imagesc(mean(abs(dis),3)/0.1059);xlabel('noise, 0.0799');colorbar
% subplot(2,3,2);subimage(2);imagesc(mean(abs(disTDL),3)/0.1059);xlabel('TDL, 0.0128');colorbar
% subplot(2,3,3);subimage(3);imagesc(mean(abs(disKBR),3)/0.1059);xlabel('KBR, 0.0121');colorbar
% subplot(2,3,4);subimage(4);imagesc(mean(abs(disLLRT),3)/0.1059);xlabel('LLRT, 0.0112');colorbar
% subplot(2,3,5);subimage(5);imagesc(mean(abs(disFastHyDe),3)/0.1059);xlabel('FastHyDe, 0.0112');colorbar
% subplot(2,3,6);subimage(6);imagesc(mean(abs(disNSLR),3)/0.1059);xlabel('NSLR, 0.0096');colorbar