generated from r4ds/bookclub-template
-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy path17_Big_picture.Rmd
308 lines (220 loc) · 7.04 KB
/
17_Big_picture.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
# Big picture
**Learning objectives:**
- Become familiar with some metaprogramming principals and how they relate to each other
- Review vocabulary associated with metaprogramming
```{r}
library(rlang)
library(lobstr)
```
## Code is data
- **expression** - Captured code (*call*, *symbol*, *constant*, or *pairlist*)
- Use `rlang::expr()`[^1] to capture code directly
```{r}
expr(mean(x, na.rm = TRUE))
```
- Use `rlang::enexpr()` to capture code indirectly
```{r}
capture_it <- function(x) { # 'automatically quotes first argument'
enexpr(x)
}
capture_it(a + b + c)
```
- 'Captured' code can be modified (like a list)!
- First element is the function, next elements are the arguments
```{r}
f <- expr(f(x = 1, y = 2))
names(f)
ff <- fff <- f # Create two copies
ff$z <- 3 # Add an argument to one
fff[[2]] <- NULL # Remove an argument from another
f
ff
fff
```
> More on this next week!
[^1]: Equivalent to `base::bquote()`
## Code is a tree
- **Abstract syntax tree** (AST) - Almost every language represents code as a tree
- Use `lobstr::ast()` to inspect these code trees
```{r}
ast(f1(f2(a, b), f3(1)))
ast(1 + 2 * 3)
```
## Code can generate code
- `rlang::call2()` creates function call
```{r}
call2("f", 1, 2, 3)
```
- Going backwards from the tree, can use functions to create calls
```{r}
call2("f1", call2("f2", "a", "b"), call2("f3", 1))
call2("+", 1, call2("*", 2, 3))
```
- `!!` bang-bang - **unquote operator**
- inserts previously defined expressions into the current one
```{r}
xx <- expr(x + x)
yy <- expr(y + y)
expr(xx / yy) # Nope!
expr(!!xx / !!yy) # Yup!
```
```{r}
cv <- function(var) {
var <- enexpr(var) # Get user's expression
expr(sd(!!var) / mean(!!var)) # Insert user's expression
}
cv(x)
cv(x + y)
```
- Avoid `paste()` for building code
- Problems with non-syntactic names and precedence among expressions
> "You might think this is an esoteric concern, but not worrying about it when generating SQL code in web applications led to SQL injection attacks that have collectively cost billions of dollars."
## Evaluation runs code
- **evaluate** - run/execute an expression
- need both expression and environment
- `eval()` uses current environment if not set
- manual evaluation means you can tweak the environment!
```{r}
xy <- expr(x + y)
eval(xy, env(x = 1, y = 10))
eval(xy, env(x = 2, y = 100))
```
## Customizing evaluations with functions
- Can also bind names to functions in supplied environment
- Allows overriding function behaviour
- This is how dplyr generates SQL for working with databases
For example...
```{r}
string_math <- function(x) {
e <- env(
caller_env(),
`+` = function(x, y) paste(x, y),
`*` = function(x, y) strrep(x, y)
)
eval(enexpr(x), e)
}
cohort <- 9
string_math("Hello" + "cohort" + cohort)
string_math(("dslc" + "is" + "awesome---") * cohort)
```
## Customizing evaluation with data
- Look for variables inside data frame
- **Data mask** - typically a data frame
- use `rlang::eval_tidy()` rather than `eval()`
```{r}
df <- data.frame(x = 1:5, y = sample(5))
eval_tidy(expr(x + y), df)
```
Catch user input with `enexpr()`...
```{r}
with2 <- function(df, expr) {
eval_tidy(enexpr(expr), df)
}
with2(df, x + y)
```
But there's a bug!
- Evaluates in environment inside `with2()`, but the expression likely refers
to objects in the Global environment
```{r}
with2 <- function(df, expr) {
a <- 1000
eval_tidy(enexpr(expr), df)
}
df <- data.frame(x = 1:3)
a <- 10
with2(df, x + a)
```
- Solved with Quosures...
## Quosures
- **Quosures** bundles expression with an environment
- Use `enquo()` instead of `enexpr()` (with `eval_tidy()`)
```{r}
with2 <- function(df, expr) {
a <- 1000
eval_tidy(enquo(expr), df)
}
df <- data.frame(x = 1:3)
a <- 10
with2(df, x + a)
```
> "Whenever you use a data mask, you must always use `enquo()` instead of `enexpr()`.
This comes back in Chapter 20.
### Which environment is bundled?
- The environment where the expression is created (i.e. the parent of where
`enquo()` is called)
Here, the global environment
```{r}
with2 <- function(df, expr) {
a <- 1000
eq <- enquo(expr)
message("with2() Parent/Calling environment: ")
print(rlang::caller_env())
message("with2() environment: ")
print(rlang::current_env())
message("Quosure details: ")
print(eq) # Print the details of the quosure
eval_tidy(eq, df)
}
a <- 10000
df <- data.frame(x = 1:3)
with2(df, x + a)
```
Here, the `fun1()` environment
```{r}
fun1 <- function(df) {
a <- 10
message("fun1() Parent/Calling environment: ")
print(rlang::caller_env())
message("fun1() environment: ")
print(rlang::current_env())
with2(df, x + a)
}
a <- 10000
df <- data.frame(x = 1:3)
fun1(df)
```
## Meeting Videos
### Cohort 1
`r knitr::include_url("https://www.youtube.com/embed/10gRbFMoh7g")`
### Cohort 2
`r knitr::include_url("https://www.youtube.com/embed/vKKDU6x3BE8")`
### Cohort 3
`r knitr::include_url("https://www.youtube.com/embed/5RLCRFli6QI")`
### Cohort 4
`r knitr::include_url("https://www.youtube.com/embed/9MDC12hgOWQ")`
### Cohort 5
`r knitr::include_url("https://www.youtube.com/embed/FSm2_TJmhm0")`
### Cohort 6
`r knitr::include_url("https://www.youtube.com/embed/Ddd_43gw8nA")`
<details>
<summary> Meeting chat log </summary>
```
00:32:31 Oluwafemi Oyedele: When should eval_tidy() be used instead of eval()?
base::eval() is sufficient for simple evaluation. Use eval_tidy() when you'd like to support expressions referring to the .data pronoun, or when you need to support quosures.
00:37:08 Trevin (he/him): https://rlang.r-lib.org/reference/topic-defuse.html
00:38:38 Federica Gazzelloni: https://rlang.r-lib.org/reference/eval_tidy.html
00:39:57 Arthur Shaw: Tidy eval book: https://bookdown.dongzhuoer.com/tidyverse/tidyeval/
00:40:14 Arthur Shaw: Also very useful resource: https://dplyr.tidyverse.org/articles/programming.html
00:40:28 Trevin (he/him): https://ggplot2.tidyverse.org/reference/aes.html
00:40:37 Federica Gazzelloni: https://ggplot2.tidyverse.org/reference/tidyeval.html
00:41:22 Oluwafemi Oyedele: It is Tidyverse design
00:49:13 Federica Gazzelloni: https://www.youtube.com/watch?v=2NixH3QAerQ&list=PL3x6DOfs2NGi9lH7q-phZlPrl6HKXYDbn&index=15
00:50:13 Federica Gazzelloni: Minute: 17:04
00:54:03 Federica Gazzelloni: con <- DBI::dbConnect(RSQLite::SQLite(), filename = ":memory:")
00:54:18 Federica Gazzelloni: DBI::dbDisconnect(con)
```
</details>
### Cohort 7
`r knitr::include_url("https://www.youtube.com/embed/MX2vNlvIUFo")`
<details>
<summary>Meeting chat log</summary>
```
00:11:09 Ryan Honomichl: https://medium.com/analytics-vidhya/become-a-better-r-programmer-with-the-awesome-lobstr-package-af97fcd22602
00:33:03 Ryan Honomichl: https://rlang.r-lib.org/reference/enquo.html
00:37:30 Ryan Honomichl: https://rlang.r-lib.org/reference/topic-multiple-columns.html
00:41:00 Ryan Honomichl: brb
00:44:37 Ron Legere: https://www.rdocumentation.org/packages/srvyr/versions/1.2.0
00:44:58 Ron Legere: http://gdfe.co/srvyr/
00:51:51 Stone: https://cran.r-project.org/web/packages/data.table/vignettes/datatable-intro.html
```
</details>