generated from r4ds/bookclub-template
-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy path09_main.qmd
544 lines (358 loc) · 21.3 KB
/
09_main.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
# 9. Plotting and Visualization
## Learning Objectives
::: incremental
- We are going to learn the basic data visualization technique using matplotlib, pandas and seaborn.
:::
# Introduction
Making informative visualizations is one of the most important tasks in every exploratory data analysis process and this can be done using **matplotlib.** It may be a part of the exploratory process for example, to help identify **outliers** or needed data transformations, or as a way of generating ideas for models. For others, building an interactive visualization for the web may be the end goal. Python has many add-on libraries for making static or dynamic visualizations, but I'll be mainly focused on **matplotlib** and libraries that build on top of it.
## import the necessary library
```{python}
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
```
::: panel-tabset
## Demo_Dataset
```{python}
#| echo: fenced
#| eval: false
data = np.arange(10)
```
## Print
```{python}
#| eval: true
#| echo: false
data = np.arange(10)
data
```
:::
::: panel-tabset
## Code
```{python}
#| echo: fenced
#| eval: false
plt.plot(data)
```
## Output
```{python}
#| eval: true
#| echo: false
plt.plot(data)
```
:::
## We can use plt.show() function to display the plot in quarto
```{python}
plt.show()
```
When we are in jupyter notebook we can use **%matplotlib notebook** so that we can display the plot, but when we are in Ipython we can use **%matplotlib** to display the plot.
## Customization of the visualization
While libraries like seaborn and pandas's built-in plotting functions will deal with many of the mundane details of making plots, should you wish to customize them beyond the function options provided, you will need to learn a bit about the matplotlib API.
## Figures and Subplots
Plots in **matplotlib** reside within a **Figure** object. You can create a new figure with **plt.figure ()**
```{python}
fig = plt.figure()
```
**plt.figure** has a number of options; notably, **figsize** will guarantee the figure has a certain size and aspect ratio if saved to disk.
You can't make a plot with a blank figure. You have to create one or more subplots using add_subplot
## Add Subplot
```{python}
ax1 = fig.add_subplot(2,2, 1)
ax1
```
This means that the figure should be 2 × 2, and we're selecting the first of four subplots (numbered from 1). We can add more subplot
## We can add more subplot
```{python}
ax2 = fig.add_subplot(2, 2, 2)
ax3 = fig.add_subplot(2, 2, 3)
ax2
ax3
```
## Adding axis methods to the plot
These plot axis objects have various methods that create different types of plots, and it is preferred to use the axis methods over the top-level plotting functions like **plt.show()**. For example, we could make a line plot with the plot method.
```{python}
fig = plt.figure()
ax1 = fig.add_subplot(2, 2, 1)
ax2 = fig.add_subplot(2, 2, 2)
ax3 = fig.add_subplot(2, 2, 3)
ax3.plot(np.random.standard_normal(50).cumsum(), color="black",
linestyle="dashed")
```
We may notice output like **matplotlib.lines.Line2D** at when we are creating our visualization. matplotlib returns objects that reference the plot subcomponent that was just added. A lot of the time you can safely ignore this output, or you can put a **semicolon** at the end of the line to suppress the output.
The additional options instruct matplotlib to plot a black dashed line. The objects returned by **fig.add_subplot** here are **AxesSubplot** objects, on which you can directly plot on the other empty subplots by calling each one's instance method.
```{python}
ax1.hist(np.random.standard_normal(100),bins=20,color="black", alpha=0.3);
ax2.scatter(np.arange(30), np.arange(30) + 3*np.random.standard_normal(30));
```
To make creating a grid of subplots more convenient, matplotlib includes a **plt.subplots** method that creates a new figure and returns a NumPy array containing the created subplot objects:
```{python}
axes = plt.subplots(2, 3)
axes
```
The axes array can then be indexed like a two-dimensional array; for example, **axes\[0, 1\]** refers to the subplot in the top row at the center
## Scatter Plot
```{python}
plt.style.use('_mpl-gallery')
# make the data
np.random.seed(3)
x = 4 + np.random.normal(0, 2, 24)
y = 4 + np.random.normal(0, 2, len(x))
# size and color:
sizes = np.random.uniform(15, 80, len(x))
colors = np.random.uniform(15, 80, len(x))
# plot
fig, ax = plt.subplots()
ax.scatter(x, y, s=sizes, c=colors, vmin=0, vmax=100)
ax.set(xlim=(0, 8), xticks=np.arange(1, 8),
ylim=(0, 8), yticks=np.arange(1, 8))
plt.show()
```
## Bar Plot
```{python}
plt.style.use('_mpl-gallery')
# make data:
np.random.seed(3)
x = 0.5 + np.arange(8)
y = np.random.uniform(2, 7, len(x))
# plot
fig, ax = plt.subplots()
ax.bar(x, y, width=1, edgecolor="white", linewidth=0.7)
ax.set(xlim=(0, 8), xticks=np.arange(1, 8),
ylim=(0, 8), yticks=np.arange(1, 8))
plt.show()
```
## Box Plot
```{python}
plt.style.use('_mpl-gallery')
# make data:
np.random.seed(10)
D = np.random.normal((3, 5, 4), (1.25, 1.00, 1.25), (100, 3))
# plot
fig, ax = plt.subplots()
VP = ax.boxplot(D, positions=[2, 4, 6], widths=1.5, patch_artist=True,
showmeans=False, showfliers=False,
medianprops={"color": "white", "linewidth": 0.5},
boxprops={"facecolor": "C0", "edgecolor": "white",
"linewidth": 0.5},
whiskerprops={"color": "C0", "linewidth": 1.5},
capprops={"color": "C0", "linewidth": 1.5})
ax.set(xlim=(0, 8), xticks=np.arange(1, 8),
ylim=(0, 8), yticks=np.arange(1, 8))
plt.show()
```
[**We can learn more with the matplotlib documentation**](https://matplotlib.org)
| Argument | Description |
|--------------------|--------------------------------------------------------|
| nrows | Number of rows of subplots |
| ncols | Number of columns of subplots |
| sharex | All subplots should use the same x-axis ticks (adjusting the xlim will affect all subplots) |
| sharey | All subplots should use the same y-axis ticks (adjusting the ylim will affect all subplots) |
| subplot_kw | Dictionary of keywords passed to add_subplot call used to create each subplot |
| **fig_kw** | Additional keywords to subplots are used when creating the figure, such as plt.subplots (2,2, figsize=(8,6)) |
: Table.1: Matplotlib.pyplot.subplots options
## Adjusting the spacing around subplots
By default, matplotlib leaves a certain amount of padding around the outside of the subplots and in spacing between subplots. This spacing is all specified relative to the height and width of the plot, so that if you resize the plot either programmatically or manually using the GUI window, the plot will dynamically adjust itself. You can change the spacing using the subplots_adjust method on Figure objects:
subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=None, hspace=None)
**wspace** and **hspace** control the percent of the figure width and figure height, respectively, to use as spacing between subplots.
```{python}
fig, axes = plt.subplots(2, 2, sharex=True, sharey=True)
for i in range(2):
for j in range(2):
axes[i, j].hist(np.random.standard_normal(500), bins=50,
color="black", alpha=0.5)
fig.subplots_adjust(wspace=0, hspace=0)
```
## **Colors, Markers, and Line Styles**
matplotlib's line `plot` function accepts arrays of x and y coordinates and optional color styling options. For example, to plot `x` versus `y` with green dashes, you would execute:
```{python}
ax.plot(x, y, linestyle="--", color="green")
```
```{python}
ax = fig.add_subplot()
ax.plot(np.random.standard_normal(30).cumsum(), color="black",
linestyle="dashed", marker="o")
plt.show()
```
line plots, you will notice that subsequent points are **linearly interpolated** by default. This can be altered with the **drawstyle** option.
```{python}
fig = plt.figure()
ax = fig.add_subplot()
data = np.random.standard_normal(30).cumsum()
ax.plot(data, color="black", linestyle="dashed", label="Default");
ax.plot(data, color="black", linestyle="dashed",
drawstyle="steps-post", label="steps-post");
ax.legend()
```
## Ticks, Labels, and Legends
Most kinds of plot decorations can be accessed through methods on matplotlib axes objects. This includes methods like **xlim**, **xticks**, and **xticklabels**. These control the **plot range**, **tick locations**, and **tick labels**, respectively. They can be used in two ways:
- Called with no arguments returns the current parameter value (e.g., **ax.xlim()** returns the current **x-axis** plotting range)
- Called with parameters sets the parameter value (e.g., **ax.xlim**(\[0, 10\]) sets the x-axis range to 0 to 10)
## Setting the title, axis labels, ticks, and tick labels
```{python}
fig, ax = plt.subplots()
ax.plot(np.random.standard_normal(1000).cumsum());
plt.show()
```
To change the **x-axis ticks**, it's easiest to use **set_xticks** and **set_xticklabels**. The former instructs matplotlib where to place the ticks along the data range; by default these locations will also be the labels. But we can set any other values as the labels using **set_xticklabels:**
The rotation option sets the x tick labels at a 30-degree rotation. Lastly, **set_xlabel** gives a name to the x-axis, and set_title is the subplot title.
## Adding legends
Legends are another critical element for identifying plot elements. There are a couple of ways to add one. The easiest is to pass the label argument when adding each piece of the plot:
```{python}
fig, ax = plt.subplots()
ax.plot(np.random.randn(1000).cumsum(), color="black", label="one");
ax.plot(np.random.randn(1000).cumsum(), color="black", linestyle="dashed",
label="two");
ax.plot(np.random.randn(1000).cumsum(), color="black", linestyle="dotted",
label="three");
ax.legend()
```
The legend method has several other choices for the location **loc argument**. See the docstring (with **ax.legend?**) for more information. The **loc legend** option tells matplotlib where to place the plot. The default is **"best"**, which tries to choose a location that is most out of the way. To exclude one or more elements from the legend, pass **no label** or **label="*nolegend*"**.
## Saving Plots to File
You can save the active figure to file using the figure object's savefig instance method. For example, to save an SVG version of a figure, you need only type:
```{python}
fig.savefig("figpath.png", dpi=400)
```
| Argument | Description |
|-----------------|-------------------------------------------------------|
| fname | String containing a filepath or a Python file-like object. The figure format is inferred from the file extension (e.g., `.pdf` for PDF or `.png` for PNG). |
| dpi | The figure resolution in dots per inch; defaults to 100 in IPython or 72 in Jupyter out of the box but can be configured. |
| facecolor, edgecolor | The color of the figure background outside of the subplots; `"w"` (white), by default. |
| format | The explicit file format to use (`"png"`, `"pdf"`, `"svg"`, `"ps"`, `"eps"`, \...). |
: Table 9.2: Some fig.savefig options
### **matplotlib Configuration**
matplotlib comes configured with color schemes and defaults that are geared primarily toward preparing figures for publication. Fortunately, nearly all of the default behavior can be customized via global parameters governing figure size, subplot spacing, colors, font sizes, grid styles, and so on. One way to modify the configuration programmatically from Python is to use the **`rc`** method; for example, to set the global default figure size to be 10 × 10, you could enter:
The first argument to `rc` is the component you wish to customize, such as **`"figure"`**, **`"axes"`**, **`"xtick"`**, **`"ytick"`**, **`"grid"`**, **`"legend"`**, or many others. After that can follow a sequence of keyword arguments indicating the new parameters. A convenient way to write down the options in your program is as a dictionary:
```{python}
plt.rc("font", family="monospace", weight="bold", size=8)
```
```{python}
plt.rc("figure", figsize=(10, 10))
```
```{python}
plt.rc("font", family="monospace", weight="bold", size=8)
```
For more extensive customization and to see a list of all the options, matplotlib comes with a configuration file ***matplotlibrc*** in the ***matplotlib/mpl-data*** **directory**. If you customize this file and place it in your home directory **titled *.matplotlibrc***, it will be loaded each time you use **matplotlib**.
All of the current configuration settings are found in the **plt.rcParams dictionary**, and they can be restored to their default values by calling the **plt.rcdefaults()** function.
The first argument to **rc** is the component you wish to customize, such as **"figure"**, **"axes"**, **"xtick"**, **"ytick"**, **"grid"**, **"legend"**, or many others. After that can follow a sequence of keyword arguments indicating the new parameters. A convenient way to write down the options in your program is as a dictionary:
## Plotting with pandas and seaborn
**matplotlib** can be a fairly low-level tool. You assemble a plot from its base components: the data display (i.e., the type of plot: line, bar, box, scatter, contour, etc.), legend, title, tick labels, and other annotations. In **pandas**, we may have multiple columns of data, along with row and column labels. pandas itself has built-in methods that simplify creating visualizations from DataFrame and Series objects. Another library is **seaborn**, a high-level statistical graphics library built on matplotlib. seaborn simplifies creating many common visualization types.
## Plotting with Pandas
## Line Plots
```{python}
import pandas as pd
import numpy as np
s = pd.Series(np.random.standard_normal(10).cumsum(), index=np.arange(0,
100, 10))
s.plot()
```
The Series object's index is passed to **matplotlib** for plotting on the x-axis, though you can disable this by passing **use_index=False**. The x-axis ticks and limits can be adjusted with the **xticks** and **xlim** options, and the **y-axis** respectively with **yticks** and **ylim**.
| Argument | Description |
|----------------|--------------------------------------------------------|
| label | Label for plot legend |
| ax | matplotlib subplot object to plot on; if nothing passed, uses active matplotlib subplot |
| style | Style string, like `"ko--"`, to be passed to matplotlib |
| alpha | The plot fill opacity (from 0 to 1) |
| kind | Can be `"area"`, `"bar"`, `"barh"`, `"density"`, `"hist"`, `"kde"`, `"line"`, or `"pie"`; defaults to `"line"` |
| figsize | Size of the figure object to create |
| logx | Pass `True` for logarithmic scaling on the x axis; pass `"sym"` for symmetric logarithm that permits negative values |
| logy | Pass `True` for logarithmic scaling on the y axis; pass `"sym"` for symmetric logarithm that permits negative values |
| title | Title to use for the plot |
| use_index | Use the object index for tick labels |
| rot | Rotation of tick labels (0 through 360) |
| xticks | Values to use for x-axis ticks |
| yticks | Values to use for y-axis ticks |
| xlim | x-axis limits (e.g., `[0, 10]`) |
| ylim | y-axis limits |
| grid | Display axis grid (off by default) |
: Table 9.3: Series.plot method arguments
## Line Graph
```{python}
df = pd.DataFrame(np.random.standard_normal((10, 4)).cumsum(0),
columns=["A", "B", "C", "D"],
index=np.arange(0, 100, 10))
plt.style.use('grayscale')
df.plot()
```
Here I used `plt.style.use('grayscale')` to switch to a color scheme more suitable for black and white publication, since some readers will not be able to see the full color plots. The `plot` attribute contains a "family" of methods for different plot types. For example, `df.plot()` is equivalent to `df.plot.line()`
## Bar Plots
The **plot.bar()** and **plot.barh()** make vertical and horizontal bar plots, respectively. In this case, the Series or DataFrame index will be used as the x **(bar)** or y **(barh)** ticks
```{python}
fig, axes = plt.subplots(2, 1)
data = pd.Series(np.random.uniform(size=16), index=list("abcdefghijklmnop"))
data.plot.bar(ax=axes[0], color="black", alpha=0.7)
data.plot.barh(ax=axes[1], color="black", alpha=0.7)
```
## With a DataFrame, bar plots group the values in each row in bars, side by side, for each value.
```{python}
df = pd.DataFrame(np.random.uniform(size=(6, 4)),
index=["one", "two", "three", "four", "five", "six"],
columns=pd.Index(["A", "B", "C", "D"], name="Genus"))
df
df.plot.bar()
```
## We create stacked bar plots from a DataFrame by passing **stacked=True**, resulting in the value in each row being stacked together horizontally
```{python}
df.plot.barh(stacked=True, alpha=0.5)
```
## Visualizing categorical data with Seaborn
Plotting functions in seaborn take a `data` argument, which can be a pandas DataFrame. The other arguments refer to column names.
```{python}
import seaborn as sns
tips = sns.load_dataset("tips")
sns.catplot(data=tips, x="day", y="total_bill")
```
```{python}
sns.catplot(data=tips, x="day", y="total_bill", hue="sex", kind="swarm")
```
## Boxplot
```{python}
sns.catplot(data=tips, x="day", y="total_bill", kind="box")
```
## Barplot
```{python}
titanic = sns.load_dataset("titanic")
sns.catplot(data=titanic, x="sex", y="survived", hue="class", kind="bar")
```
## Scatter Plot
```{python}
import pandas as pd
import seaborn as sns
penguin=pd.read_excel('data/penguins.xlsx')
ax = sns.regplot(x="bill_length_mm", y="flipper_length_mm", data=penguin)
ax
```
In exploratory data analysis, it's helpful to be able to look at all the scatter plots among a group of variables; this is known as a *pairs* plot or *scatter plot matrix.*
```{python}
sns.pairplot(penguin, diag_kind="kde", plot_kws={"alpha": 0.2})
```
This **plot_kws** enables us to pass down configuration options to the individual plotting calls on the off-diagonal elements.
**Point Plot**
```{python}
sns.catplot(data=titanic, x="sex", y="survived", hue="class", kind="point")
```
## Line Plot
```{python}
import numpy as np
import pandas as pd
import seaborn as sns
sns.set_theme(style="whitegrid")
rs = np.random.RandomState(365)
values = rs.randn(365, 4).cumsum(axis=0)
dates = pd.date_range("1 1 2016", periods=365, freq="D")
data = pd.DataFrame(values, dates, columns=["A", "B", "C", "D"])
data = data.rolling(7).mean()
sns.lineplot(data=data, palette="tab10", linewidth=2.5)
```
## **Facet Grids and Categorical Data**
One way to visualize data with many categorical variables is to use a ***facet grid***, which is a **two-dimensional layout** of plots where the data is split across the plots on each axis based on the distinct values of a certain variable. **seaborn** has a useful built-in function **`catplot`** that simplifies making many kinds of faceted plots split by **categorical variables**
```{python}
sns.catplot(x="species", y="bill_length_mm", hue="sex", col="island",
kind="bar", data=penguin)
```
**`catplot`** supports other plot types that may be useful depending on what you are trying to display. For example, *box plots* (which show the median, quartiles, and outliers) can be an effective visualization type.
```{python}
sns.catplot(x="bill_length_mm", y="island", kind="box",
data=penguin)
```
## **Other Python Visualization Tools**
- There are many other tools for data visualization in python such as \[[Altair](https://altair-viz.github.io/)\](https://altair-viz.github.io/); \[[Bokeh](http://bokeh.pydata.org/)\](http://bokeh.pydata.org/) and \[[Plotly](https://plotly.com/python)\](https://plotly.com/python)
- For creating static graphics for print or web, I recommend using matplotlib and libraries that build on matplotlib, like pandas and seaborn, for your needs.