-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPQC_main_script.m
348 lines (298 loc) · 9.78 KB
/
PQC_main_script.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
clc
clear all
close all
%% Load data
opt = 1;
switch opt
case 1
load('datasets4.mat','data1')
data = data1.data;
class = data1.class;
case 2
load('datasets4.mat','data2')
data = data2.data;
class = data2.class;
case 3
load('datasets4.mat','data3')
data = data3(1).data;
class = data3(1).class;
case 4
load('datasets4.mat','data4')
data = data4(1).data;
class = data4(1).class;
case 5
load('datasets4.mat','data5')
data = data5(1).data;
class = data5(1).class;
end
%% Preprocessing
% % Data from 'datasets4.mat' is already preprocessed.
% In general, only apply zscore if the features are not related themselves
% as a distance. Do not zscore for data coming from Euclidean embedding!!
[data1,mu,s] = zscore(data);
lambda = mean(sqrt(sum(data.^2,2)));
data = data./lambda;
%% Plot data
for c_col=1:size(class,2)
figure
if size(data,2)==3
scatter3(data(:,1), data(:,2), data(:,3), 20, class)
xlabel('X1')
ylabel('X2')
zlabel('X3')
elseif size(data,2)==2
gscatter(data(:,1),data(:,2),class)
grid minor
title(['Data #', num2str(opt)])
xlabel('X1')
ylabel('X2')
else
[coeff, score, latent] = pca(data);
scatter3(score(:,1),score(:,2),score(:,3), 20, class(:,c_col))
title(['PCA Data #', num2str(opt), 'Class column: ', num2str(c_col)])
grid minor
xlabel('PCA1')
ylabel('PCA2')
zlabel('PCA3')
end
end
%% Histograms 2D
figure
h = histogram2(data(:,1), data(:,2),'FaceColor','flat');
colorbar
%% QC SETUP
QCsetup = struct;
QCsetup.steps = 1000;
QCsetup.eta = 0.005; % Default is eta = 0.001;
QCsetup.b1 = 0.9;
QCsetup.b2 = 0.999;
QCsetup.ep = 1e-8;
QCsetup.showProgress = 0;
QCsetup.track = 0;
QCsetup.ERR = 1e-3;
QCsetup.Minstep = 0.025; % Maximum distance to travel in centroids paths
QCsetup.Emerge = 0.001; % Absolute energy to merge K, minimum is ERR after SGD
%% Select QC model
% QC3 = false; % QC2
QC3 = true; % QC3
q = 2;
if QC3 == true
q = 3;
end
snr = 1;
lambda = mean(sqrt(sum(data.^2,2)));
data = data./lambda;
datagen = data;
datallo = data;
%% Scan %knn
scan_knn = 1;
if scan_knn == true
qtity2 = 5;
qtile = linspace(0.07,0.35,qtity2);
else
qtity2 = 1;
qtile = 0.15;
end
%% Scan dE
scan_dE = 1;
if scan_dE == true
qtity1 = 20;
energy = logspace(-3.5,2,qtity1);
else
qtity1 = 1;
energy = 0.01;
end
%% QC ANALYSIS
Energies = struct([]);
clusters = zeros(qtity1,qtity2,3);
ANLLdata = zeros(qtity1,qtity2);
maxERRdata = zeros(qtity1,qtity2);
datalabels = zeros(size(data,1),qtity1,qtity2);
if size(class,2)==2
crdata = zeros(qtity1,qtity2,2);
jsdata = zeros(qtity1,qtity2,2);
else
crdata = zeros(qtity1,qtity2);
jsdata = zeros(qtity1,qtity2);
end
for i=1:qtity2
noise = qtile(i)*snr;
local = qtile(i);
if ~QC3
dist2 = squareform(pdist(datagen,'euclidean'));
[dist2sort,~] = sort(dist2);
m1 = size(datagen,1);
sigmaknn = mean(dist2sort(2:ceil((m1-1)*local)+1,:),1)';
[K,labels,maxERR,sigma,centroids]=QC2main_v1(datagen,...
sigmaknn,datallo,QCsetup);
else
[K,labels,maxERR,sigma,centroids]=QC3main_eig_v5(datagen,...
noise, local,datallo,QCsetup);
end
dE = QCdEnergies(datagen,sigma,centroids,K,QCsetup);
Energies(i).dE = dE(~eye(size(dE,1)));
for j=1:qtity1
% disp(opt*100000+qct*10000+100*i+j)
[~, ~, ~,K0,label0,Etree] = Etreefun_v3(dE,labels,energy(j));
if j==1
Energies(i).knn = Etree;
end
if QC3 == false
[~, ~, ~, ~, Pk_x] = probQC(datagen,sigma,datallo,label0);
[Pk_x_max1, Pk_x_index] = max(Pk_x,[],2);
lab0=unique(label0);
problabqc3 = lab0(Pk_x_index);
else
[~, ~, ~, ~, Pk_x] = ProbQC3(datagen,sigma,datallo,label0);
[Pk_x_max1, Pk_x_index] = max(Pk_x,[],2);
lab0=unique(label0);
problabqc3 = lab0(Pk_x_index);
end
clusters(j,i,1) = K;
clusters(j,i,2) = K0;
clusters(j,i,3) = length(unique(problabqc3));
ANLLdata(j,i) = -sum(log(Pk_x_max1))/size(Pk_x_max1,1);
maxERRdata(j,i) = maxERR;
datalabels(:,j,i)= problabqc3;
if size(class,2)==2
jsdata(j,i,1) = myClustMeasure2(problabqc3,class(:,1));
jsdata(j,i,2) = myClustMeasure2(problabqc3,class(:,2));
crdata(j,i,1) = cramer(problabqc3,class(:,1));
crdata(j,i,2) = cramer(problabqc3,class(:,2));
else
jsdata(j,i) = myClustMeasure2(problabqc3,class(:,1));
crdata(j,i) = cramer(problabqc3,class(:,1));
end
end
end
%% SAVE results?
saveok = 0;
if saveok == true
save(['PQC_main_Dat',num2str(opt),'_QC',num2str(q),'.mat'],'clusters',...
'ANLLdata','maxERRdata','jsdata','crdata','qtile','energy','Energies')
end
%% PLOT RESULTS
%% Single solution for 2D data
if ~scan_knn && ~scan_dE == true
figure
gscatter(data(:,1),data(:,2),problabqc3)
title(['QC',num2str(q),': JS = ',num2str(myClustMeasure2(problabqc3,class(:,1)),3),...
', qtile = ',num2str(qtile),', dE = ',num2str(energy,2)])
grid minor
end
%% Probabilistic map for 2D data
if ~scan_knn && ~scan_dE == true && size(datagen,2) == 2
gridsize = 30;
datagrid = zeros(gridsize,2);
datagrid(:,1) = linspace(min(datagen(:,1)), max(datagen(:,1)),gridsize);
datagrid(:,2) = linspace(min(datagen(:,2)), max(datagen(:,2)),gridsize);
datagrid2 = zeros(gridsize^2,1);
[gridx, gridy] = meshgrid(datagrid(:,1),datagrid(:,2));
datagrid2(:,1) = reshape(gridx,[],1);
datagrid2(:,2) = reshape(gridy,[],1);
if QC3 == false
[Pjoint, ~, ~, Px_k_grid, Pk_x_grid] = probQC(datagen,sigma,datagrid2,label0);
else
[Pjoint, ~, ~, Px_k_grid, Pk_x_grid] = ProbQC3(datagen,sigma,datagrid2,label0);
end
Px_k_max = max(Px_k_grid,[],2);
outliers = 0;
if outliers == true
outlier = zeros(gridsize^2,1);
outlier(Px_k_max < 0.05) = 1;
gridoutlier = reshape(outlier,gridsize,gridsize);
end
% % % % % % % % % P(K|X) % % % % % % % % %
leg = [];
leg{size(Pk_x_grid,2)} = [];
h=figure('Name', 'P(K|X) map');
set(h,'Position',[156 186 880 762]);
for i=1:size(Pk_x_grid,2)
gridProb = reshape(Pk_x_grid(:,i),gridsize,gridsize);
surf(gridx, gridy, gridProb, repmat(i,gridsize,gridsize))
% colormap(cool)
hold all
leg{i} = num2str(i);
end
if outliers == true
surf(gridx, gridy, gridoutlier, zeros(gridsize,gridsize))%, repmat(i,gridsize,gridsize))
leg{i+1} = 'Outlier';
end
title('P(K|X)')
legend(leg)
% % % % % % % % % P(X|K) Heat map % % % % % % % % %
colormap default
aux = Px_k_max;
aux(aux>1) = 1;
v = [0, 0.01,0.05,0.1,0.2,0.35,0.5,0.75,1];
h=figure('Name', 'P(X|K) map');
gridProb = reshape(aux,gridsize,gridsize);
contourf(gridx, gridy, gridProb,v,'ShowText','on')
contourcbar
title('max_K P(X|K)')
end
%% ANLL 3D
if scan_knn && scan_dE == true
dataname = {'Art.#1','Art.#2','Crabs','Olive','Seeds'};
qcname = {'QC_{knn}^{prob}','QC_{cov}^{prob}'};
ANLLmod = ANLLdata(:);
K = reshape(clusters(:,:,3),[],1);
% ANLLmod(K==1) = 1;
ANLLmod(K==1) = max(ANLLmod);
ANLLmod = reshape(ANLLmod, size(ANLLdata));
h = figure;
surf(qtile,log10(energy),clusters(:,:,3))
alpha(0.3)
ylabel('log_{10}(E threshold)')
xlabel('%knn')
zlabel('#K')
title(['# Clusters ',qcname{q-1}])
% title(['# Clusters ',qcname{q-1},'. ',dataname{r},' data.'])
% savefig(h,['JMLR_R',num2str(r),'_QC',num2str(q),'_clusters.fig']);
h = figure;
surf(qtile,log10(energy),ANLLdata)
alpha(0.3)
ylabel('log_{10}(E threshold)')
xlabel('%knn')
zlabel('ANLL')
title(['ANLL ',qcname{q-1}])
% title(['ANLL ',qcname{q-1},'. ',dataname{r},' data.'])
% savefig(h,['JMLR_R',num2str(r),'_QC',num2str(q),'_ANLL.fig']);
h = figure;
surf(qtile,log10(energy),ANLLmod)
alpha(0.3)
ylabel('log_{10}(E threshold)')
xlabel('%knn')
zlabel('ANLLmod')
title(['ANLLmod ',qcname{q-1}])
% title(['ANLLmod ',qcname{q-1},'. ',dataname{r},' data.'])
% savefig(h,['JMLR_R',num2str(r),'_QC',num2str(q),'_ANLLmod.fig']);
if size(jsdata,3)==2
h = figure;
surf(qtile,log10(energy),jsdata(:,:,1))
alpha(0.3)
ylabel('log_{10}(E threshold)')
xlabel('%knn')
zlabel('Jaccard1')
title(['Jaccard1 ',qcname{q-1}])
% title(['Jaccard1 ',qcname{q-1},'. ',dataname{r},' data.'])
h = figure;
surf(qtile,log10(energy),jsdata(:,:,2))
alpha(0.3)
ylabel('log_{10}(E threshold)')
xlabel('%knn')
zlabel('Jaccard2')
title(['Jaccard2 ',qcname{q-1}])
% title(['Jaccard2 ',qcname{q-1},'. ',dataname{r},' data.'])
else
h = figure;
surf(qtile,log10(energy),jsdata)
alpha(0.3)
ylabel('log_{10}(E threshold)')
xlabel('%knn')
zlabel('Jaccard')
title(['Jaccard ',qcname{q-1}])
% title(['Jaccard ',qcname{q-1},'. ',dataname{r},' data.'])
end
end
%%