-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
235 lines (207 loc) · 11 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import argparse
import time
import sys
import math
import numpy as np
import torch
import torch.nn as nn
import pdb # noqa: F401
from torchtext.datasets import PennTreeBank
from src.seq2seq_data import PTBSeq2Seq
from src.utils import get_sha
from src.sst import WordLevelSST
from src import baseline
from src import rvae
from src import sequential
from src import pfilter
from src import discrete_pfilter
parser = argparse.ArgumentParser(description='PyTorch PennTreeBank RNN/LSTM Language Model')
parser.add_argument('--dataset', type=str, default='ptb',
help='one of [ptb (default), wt2]')
parser.add_argument('--model', type=str, default='rvae',
help='type of model to use (baseline, rvae, sequential, filter, discrete_filter)')
parser.add_argument('--emsize', type=int, default=512,
help='size of word embeddings')
parser.add_argument('--nhid', type=int, default=1024,
help='number of hidden units per layer')
parser.add_argument('--nlayers', type=int, default=1,
help='number of layers')
parser.add_argument('--no-autoregressive-prior', action='store_true',
help='disable the autoregressive prior on z for the filter model')
parser.add_argument('--z-dim', type=int, default=32,
help='dimensionality of the hidden z')
parser.add_argument('--lr', type=float, default=1.0,
help='initial learning rate')
parser.add_argument('--clip', type=float, default=3.0,
help='gradient clipping')
parser.add_argument('--kl-anneal-delay', type=float, default=4,
help='number of epochs to delay increasing the KL divergence contribution')
parser.add_argument('--kl-anneal-rate', type=float, default=0.0001,
help='amount to increase the KL divergence amount *per batch*')
parser.add_argument('--kl-anneal-start', type=float, default=0.0001,
help='starting KL annealing value; upperbounds initial KL before annealing')
parser.add_argument('--epochs', type=int, default=1000,
help='upper epoch limit')
parser.add_argument('--batch_size', type=int, default=80, metavar='N',
help='batch size')
parser.add_argument('--bptt', type=int, default=70,
help='sequence length')
parser.add_argument('--dropout', type=float, default=0.5,
help='dropout applied to layers (0 = no dropout)')
parser.add_argument('--dropouth', type=float, default=0.25,
help='dropout for rnn layers (0 = no dropout)')
parser.add_argument('--dropouti', type=float, default=0.1,
help='dropout for input embedding layers (0 = no dropout)')
parser.add_argument('--dropoute', type=float, default=0.1,
help='dropout to remove words from embedding layer (0 = no dropout)')
parser.add_argument('--wdrop', type=float, default=0.5,
help='amount of weight dropout to apply to the RNN hidden to hidden matrix')
parser.add_argument('--temp', type=float, default=0.6,
help='temperature of the posterior to use for relaxed discrete latents')
parser.add_argument('--temp_prior', type=float, default=0.4,
help='temperature of the prior to use for relaxed discrete latents')
parser.add_argument('--not-tied', action='store_true',
help='tie the word embedding and softmax weights')
parser.add_argument('--max-kl-penalty', type=float, default=0.,
help='maximum KL penalty to allow (essentially gradient clips the KL)')
parser.add_argument('--no-iwae', action='store_true',
help='whether to disable reporting of the IWAE metric instead of KL')
parser.add_argument('--num-importance-samples', type=int, default=5,
help='number of samples to take for IWAE')
parser.add_argument('--seed', type=int, default=1111,
help='random seed')
parser.add_argument('--nonmono', type=int, default=5,
help='random seed')
parser.add_argument('--cuda', action='store_false',
help='use CUDA')
parser.add_argument('--semi-supervised', action='store_true',
help='whether to try to do semisupervised training on the sentiment dataset')
parser.add_argument('--log-interval', type=int, default=100, metavar='N',
help='report interval')
randomhash = ''.join(str(time.time()).split('.'))
parser.add_argument('--save', type=str, default=randomhash+'.pt',
help='path to save the final model')
parser.add_argument('--alpha', type=float, default=2,
help='alpha L2 regularization on RNN activation (alpha = 0 means no regularization)')
parser.add_argument('--beta', type=float, default=1,
help='beta slowness regularization applied on RNN activiation (beta = 0 means no regularization)')
parser.add_argument('--wdecay', type=float, default=1.2e-6,
help='weight decay applied to all weights')
parser.add_argument('--prof', type=str, default=None,
help='If specified, profile the first 10 batches and dump to <prof>')
parser.add_argument('--use-sru', action='store_true',
help='whether to use Tao\'s optimized RNN implementation [NOTE: not currently implemented]')
args = parser.parse_args()
print("running {}".format(' '.join(sys.argv)))
# Set the random seed manually for reproducibility.
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if torch.cuda.is_available():
if not args.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
device = -1
else:
torch.cuda.manual_seed(args.seed)
device = torch.cuda.current_device()
else:
args.cuda = False
device = -1
###############################################################################
# Load data and build the model
###############################################################################
if args.dataset == 'ptb' and args.model == 'baseline':
train_data, val_data, test_data = PennTreeBank.iters(batch_size=args.batch_size,
bptt_len=args.bptt,
device=device)
corpus = train_data.dataset.fields['text'].vocab
elif args.dataset == 'ptb' or args.dataset == 'sentiment':
if args.dataset == 'ptb':
cls = PTBSeq2Seq
else:
cls = WordLevelSST
if args.no_iwae:
train_data, val_data, test_data = cls.iters(batch_size=args.batch_size, device=device)
else:
# in IWAE evaluation, we want training to stay fast while eval has smaller batches ( * num_importance_samples)
small_batch = 8 * (int(args.batch_size / args.num_importance_samples) // 8)
if args.model == 'sequential':
train_data, val_data, test_data = cls.iters(batch_sizes=(args.batch_size, small_batch, small_batch), device=device)
elif args.model == 'filter':
# in the filter, everything is IWAE-fied, essentially
args.batch_size = small_batch # so that inside-epoch tracking is correct
train_data, val_data, test_data = cls.iters(batch_size=small_batch, device=device)
else:
train_data, val_data, test_data = cls.iters(batch_size=args.batch_size, device=device)
corpus = train_data.dataset.fields['target'].vocab
ntokens = len(corpus)
# BASELINE RNNLM
if args.model == 'baseline':
model = baseline.RNNModel(ntokens, args.emsize, args.nhid, args.nlayers,
args.dropout, args.dropouth, args.dropouti,
args.dropoute, args.wdrop, not args.not_tied)
# BASELINE RVAE
elif args.model == 'rvae':
model = rvae.RVAE(ntokens, args.emsize, args.nhid, args.z_dim, 1, args.dropout, args.dropouth,
args.dropouti, args.dropoute, args.wdrop, not args.not_tied)
# OUR 1st MODEL (A sequentially generated VAE)
elif args.model == 'sequential':
model = sequential.SequentialLM(ntokens, args.emsize, args.nhid, args.z_dim, 1, args.dropout,
args.dropouth, args.dropouti, args.dropoute, args.wdrop,
not args.no_autoregressive_prior)
# Our 2nd Model (same generative model, but we let Q be a particle filter)
elif args.model == 'filter':
model = pfilter.PFLM(ntokens, args.emsize, args.nhid, args.z_dim, 1, args.dropout,
args.dropouth, args.dropouti, args.dropoute, args.wdrop,
not args.no_autoregressive_prior)
elif args.model == 'discrete_filter':
model = discrete_pfilter.DiscretePFLM(ntokens, args.emsize, args.nhid, args.z_dim, 1, args.dropout,
args.dropouth, args.dropouti, args.dropoute, args.wdrop,
not args.no_autoregressive_prior)
else:
raise NotImplementedError("see python main.py --help for a list of models")
if args.cuda and torch.cuda.is_available():
model.cuda()
total_params = sum(x.size()[0] * x.size()[1] if len(x.size()) > 1 else x.size()[0] for x in model.parameters())
print("sha: {}".format(get_sha().strip()))
print('args:', args)
print('model total parameters:', total_params)
print('model architecture:')
print(model)
criterion = nn.CrossEntropyLoss(reduce=args.no_iwae)
# Loop over epochs.
args.anneal = 0.01
lr = args.lr
best_val_loss = []
stored_loss = 100000000
# At any point you can hit Ctrl + C to break out of training early.
try:
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, weight_decay=args.wdecay)
for epoch in range(1, args.epochs+1):
epoch_start_time = time.time()
if epoch < args.kl_anneal_delay:
args.anneal = 0.0001
if epoch in (15, 25, 35, 45) and args.model == 'rvae':
args.lr = 0.9 * args.lr
for param_group in optimizer.param_groups:
param_group['lr'] = args.lr
train_loss = model.train_epoch(corpus, train_data, criterion, optimizer, epoch, args, args.num_importance_samples)
# let's ignore ASGD for now
val_loss, val_elbo, val_nll = model.evaluate(corpus, val_data, args, criterion, not args.no_iwae, args.num_importance_samples)
print('-' * 89)
print('| end of epoch {:3d} | time: {:5.2f}s | valid IWAE {:5.2f} | valid ELBO {:5.2f} | valid NLL {:5.2f} | '
'valid ppl {:8.2f}'.format(epoch, (time.time() - epoch_start_time), val_loss, val_elbo, val_nll,
math.exp(val_loss) if val_loss < 10. else float('inf')))
print('-' * 89)
except KeyboardInterrupt:
print('-' * 89)
print('Exiting from training early')
# Load the best saved model.
# with open(args.save, 'rb') as f:
# model = torch.load(f)
#
# # Run on test data.
# test_loss = model.evaluate(corpus, test_data, args, criterion)
# print('=' * 89)
# print('| End of training | test loss {:5.2f} | test ppl {:8.2f}'.format(
# test_loss, math.exp(test_loss)))
# print('=' * 89)