-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparameter_search.py
executable file
·32 lines (27 loc) · 1.14 KB
/
parameter_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
#!/usr/bin/python
import os
import cPickle as pkl
import neural_networks
import bayesian_parameter_optimization as bpo
from build_kws_data import get_data
from params import nnet_params, hyperparameter_space
from params import TRIAL_DIRECTORY, MODEL_DIRECTORY, MODEL_NAME
from params import target_glob_str, other_glob_str, file_durations_path
from params import MIN_LENGTH, standard_scaler_path
if __name__ == '__main__':
print("Executing bayesian hyperparameter optimization")
# Load data and convert it to float 32
targets, others = get_data(
target_glob_str, other_glob_str, file_durations_path, MIN_LENGTH)
# add mean and std to nnet_params
ss = pkl.load(open(standard_scaler_path, 'rb'))
nnet_params['offset'] = ss.mean_
nnet_params['scale'] = ss.scale_
# Run parameter optimization FOREVER
bpo.parameter_search(targets, others,
nnet_params,
hyperparameter_space,
os.path.join(TRIAL_DIRECTORY, MODEL_NAME),
MODEL_DIRECTORY,
neural_networks.train,
MODEL_NAME)