-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy path01_how_to_langgraph_example_01.py
76 lines (59 loc) · 2.53 KB
/
01_how_to_langgraph_example_01.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# Author: Rajib Deb
# A simple example showing how langgraph works
import operator
from typing import TypedDict, Annotated, Sequence
from langchain_core.messages import BaseMessage, HumanMessage
from langgraph.graph import StateGraph
def call_bbc_agent(state):
messages = state['messages']
print("bbc ", messages)
# I have hard coded the below. But I can very well call a open ai model to get the response
response = "Here is the India news from BBC"
# We return a list, because this will get added to the existing list
return {"messages": [response]}
def call_cnn_agent(state):
messages = state['messages']
print("cnn ", messages)
# I have hard coded the below. But I can very well call a bedrock model to get the response
response = "Here is the India news from CNN"
# We return a list, because this will get added to the existing list
return {"messages": [response]}
def call_ndtv_agent(state):
messages = state['messages']
print("ndtv ", messages)
# I have hard coded the below. But I can very well call a gemini model to get the response
response = "Here is the India news from NDTV"
# We return a list, because this will get added to the existing list
return {"messages": [response]}
def call_fox_agent(state):
messages = state['messages']
print("fox ", messages)
# I have hard coded the below. But I can very well call a LlaMa model to get the response
response = "Here is the India news from FOX"
# We return a list, because this will get added to the existing list
return {"messages": [response]}
class AgentState(TypedDict):
messages: Annotated[Sequence[BaseMessage], operator.add]
workflow = StateGraph(AgentState)
# Define the two nodes we will cycle between
workflow.add_node("bbc_agent", call_bbc_agent)
workflow.add_node("cnn_agent", call_cnn_agent)
workflow.add_node("ndtv_agent", call_ndtv_agent)
workflow.add_node("fox_agent", call_fox_agent)
workflow.set_entry_point("bbc_agent")
# bbc_agent->cnn_agent
workflow.add_edge('bbc_agent', 'cnn_agent')
# bbc_agent->cnn_agent->ndtv_agent
workflow.add_edge('cnn_agent', 'ndtv_agent')
# bbc_agent->cnn_agent->ndtv_agent->fox_agent
workflow.add_edge('ndtv_agent', 'fox_agent')
workflow.set_finish_point("fox_agent")
app = workflow.compile()
inputs = {"messages": [HumanMessage(content="What is India news")]}
response = app.invoke(inputs)
messages = response["messages"]
for message in messages:
if isinstance(message, HumanMessage):
print("Question :", message.content)
else:
print(message)