Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[BUG] WSL - No NVIDIA GPU detected but nvidia-smi works and shows device #680

Open
adriantorrie opened this issue Jun 1, 2024 · 2 comments
Labels
? - Needs Triage Need team to review and classify bug Something isn't working

Comments

@adriantorrie
Copy link

adriantorrie commented Jun 1, 2024

Describe the bug

  1. GPU device not found in running RapidsAI Docker container in WSL
  2. nvidia-smi can see the device
    2.1. in Windows
    2.2. in WSL
    2.3. from within the running RapidsAI container (in WSL), via the ipython prompt
    2.4. from within the running RapidsAI container (in WSL), via the run command override

For step 1 above (from WSL):

$ docker run --gpus all --pull always --rm -it \
    --shm-size=1g --ulimit memlock=-1 --ulimit stack=67108864 \
    nvcr.io/nvidia/rapidsai/base:24.04-cuda12.2-py3.11

24.04-cuda12.2-py3.11: Pulling from nvidia/rapidsai/base
Digest: sha256:a9ec3f43016242a11354abf70f545abdd9623239b0a3a1c9a1da65ddd75f3d55
Status: Image is up to date for nvcr.io/nvidia/rapidsai/base:24.04-cuda12.2-py3.11
This container image and its contents are governed by the NVIDIA Deep Learning Container License.
By pulling and using the container, you accept the terms and conditions of this license:
https://developer.download.nvidia.com/licenses/NVIDIA_Deep_Learning_Container_License.pdf

Python 3.11.9 | packaged by conda-forge | (main, Apr 19 2024, 18:36:13) [GCC 12.3.0]
Type 'copyright', 'credits' or 'license' for more information
IPython 8.22.2 -- An enhanced Interactive Python. Type '?' for help.

In [1]: import cudf
/opt/conda/lib/python3.11/site-packages/cudf/utils/_ptxcompiler.py:61: UserWarning: Error getting driver and runtime versions:

stdout:



stderr:

Traceback (most recent call last):
  File "/opt/conda/lib/python3.11/site-packages/numba/cuda/cudadrv/driver.py", line 254, in ensure_initialized
    self.cuInit(0)
  File "/opt/conda/lib/python3.11/site-packages/numba/cuda/cudadrv/driver.py", line 327, in safe_cuda_api_call
    self._check_ctypes_error(fname, retcode)
  File "/opt/conda/lib/python3.11/site-packages/numba/cuda/cudadrv/driver.py", line 395, in _check_ctypes_error
    raise CudaAPIError(retcode, msg)
numba.cuda.cudadrv.driver.CudaAPIError: [500] Call to cuInit results in CUDA_ERROR_NOT_FOUND

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "<string>", line 4, in <module>
  File "/opt/conda/lib/python3.11/site-packages/numba/cuda/cudadrv/driver.py", line 292, in __getattr__
    self.ensure_initialized()
  File "/opt/conda/lib/python3.11/site-packages/numba/cuda/cudadrv/driver.py", line 258, in ensure_initialized
    raise CudaSupportError(f"Error at driver init: {description}")
numba.cuda.cudadrv.error.CudaSupportError: Error at driver init: Call to cuInit results in CUDA_ERROR_NOT_FOUND (500)


Not patching Numba
  warnings.warn(msg, UserWarning)
/opt/conda/lib/python3.11/site-packages/cudf/utils/gpu_utils.py:149: UserWarning: No NVIDIA GPU detected
  warnings.warn("No NVIDIA GPU detected")

Steps/Code to reproduce bug

  • I followed the following instructions (found here)
  1. Install WSL2 and the Ubuntu 22.04 package using Microsoft’s instructions.
  2. Install the latest NVIDIA Drivers on the Windows host.
  3. Install latest Docker Desktop for Windows
  4. Log in to the WSL2 Linux instance.
  5. Generate and run the RAPIDS docker command based on your desired configuration using the RAPIDS Release Selector.
  6. Inside the Docker instance, run this code to check that the RAPIDS installation is working:
import cudf
print(cudf.Series([1, 2, 3]))

Note: For step 5 above, the Release Selector provided me with the following docker command:

docker run --gpus all --pull always --rm -it \
    --shm-size=1g --ulimit memlock=-1 --ulimit stack=67108864 \
    nvcr.io/nvidia/rapidsai/base:24.04-cuda12.2-py3.11

Expected behavior

The expectation was that the following line of python would execute, and not raise an exception with "No NVIDIA GPU detected":

import cudf

Environment details (please complete the following information):

  • WSL2 on Windows 10
  • Docker Desktop using WSL engine
  • NVIDIA GeForce GTX 1080 Ti
  • The error occurs when executed via Docker, within the following WSL distros: Ubuntu-22.02 and Ubuntu-24.04

Additional context

  • From Powershell
> wsl --version
WSL version: 2.1.5.0
Kernel version: 5.15.146.1-2
WSLg version: 1.0.60
MSRDC version: 1.2.5105
Direct3D version: 1.611.1-81528511
DXCore version: 10.0.25131.1002-220531-1700.rs-onecore-base2-hyp
Windows version: 10.0.19045.4412


> wsl --list -v
  NAME                   STATE           VERSION
* Ubuntu-24.04           Running         2
  docker-desktop         Running         2
  docker-desktop-data    Running         2
  Ubuntu-22.04           Running         2


> docker --version
Docker version 26.1.1, build 4cf5afa


> docker info
Client:
 Version:    26.1.1
 Context:    default
 Debug Mode: false
 Plugins:
  buildx: Docker Buildx (Docker Inc.)
    Version:  v0.14.0-desktop.1
    Path:     C:\Program Files\Docker\cli-plugins\docker-buildx.exe
  compose: Docker Compose (Docker Inc.)
    Version:  v2.27.0-desktop.2
    Path:     C:\Program Files\Docker\cli-plugins\docker-compose.exe
  debug: Get a shell into any image or container (Docker Inc.)
    Version:  0.0.29
    Path:     C:\Program Files\Docker\cli-plugins\docker-debug.exe
  dev: Docker Dev Environments (Docker Inc.)
    Version:  v0.1.2
    Path:     C:\Program Files\Docker\cli-plugins\docker-dev.exe
  extension: Manages Docker extensions (Docker Inc.)
    Version:  v0.2.23
    Path:     C:\Program Files\Docker\cli-plugins\docker-extension.exe
  feedback: Provide feedback, right in your terminal! (Docker Inc.)
    Version:  v1.0.4
    Path:     C:\Program Files\Docker\cli-plugins\docker-feedback.exe
  init: Creates Docker-related starter files for your project (Docker Inc.)
    Version:  v1.1.0
    Path:     C:\Program Files\Docker\cli-plugins\docker-init.exe
  sbom: View the packaged-based Software Bill Of Materials (SBOM) for an image (Anchore Inc.)
    Version:  0.6.0
    Path:     C:\Program Files\Docker\cli-plugins\docker-sbom.exe
  scout: Docker Scout (Docker Inc.)
    Version:  v1.8.0
    Path:     C:\Program Files\Docker\cli-plugins\docker-scout.exe

Server:
 Containers: 2
  Running: 2
  Paused: 0
  Stopped: 0
 Images: 6
 Server Version: 26.1.1
 Storage Driver: overlayfs
  driver-type: io.containerd.snapshotter.v1
 Logging Driver: json-file
 Cgroup Driver: cgroupfs
 Cgroup Version: 1
 Plugins:
  Volume: local
  Network: bridge host ipvlan macvlan null overlay
  Log: awslogs fluentd gcplogs gelf journald json-file local splunk syslog
 Swarm: inactive
 Runtimes: io.containerd.runc.v2 runc
 Default Runtime: runc
 Init Binary: docker-init
 containerd version: e377cd56a71523140ca6ae87e30244719194a521
 runc version: v1.1.12-0-g51d5e94
 init version: de40ad0
 Security Options:
  seccomp
   Profile: unconfined
 Kernel Version: 5.15.146.1-microsoft-standard-WSL2
 Operating System: Docker Desktop
 OSType: linux
 Architecture: x86_64
 CPUs: 16
 Total Memory: 7.731GiB
 Name: docker-desktop
 ID: 2e51595d-9630-4374-b2c6-a01e13c0e11f
 Docker Root Dir: /var/lib/docker
 Debug Mode: false
 HTTP Proxy: http.docker.internal:3128
 HTTPS Proxy: http.docker.internal:3128
 No Proxy: hubproxy.docker.internal
 Labels:
  com.docker.desktop.address=npipe://\\.\pipe\docker_cli
 Experimental: false
 Insecure Registries:
  hubproxy.docker.internal:5555
  127.0.0.0/8
 Live Restore Enabled: false

WARNING: No blkio throttle.read_bps_device support
WARNING: No blkio throttle.write_bps_device support
WARNING: No blkio throttle.read_iops_device support
WARNING: No blkio throttle.write_iops_device support
WARNING: daemon is not using the default seccomp profile


> nvidia-smi
Sun Jun  2 00:17:43 2024
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 555.85                 Driver Version: 555.85         CUDA Version: 12.5     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                  Driver-Model | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA GeForce GTX 1080 Ti   WDDM  |   00000000:23:00.0  On |                  N/A |
| 40%   25C    P8             21W /  250W |    1600MiB /  11264MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+

+-----------------------------------------------------------------------------------------+
| Processes:                                                                              |
|  GPU   GI   CI        PID   Type   Process name                              GPU Memory |
|        ID   ID                                                               Usage      |
|=========================================================================================|
|    0   N/A  N/A      2740    C+G   ...1.0_x64__8wekyb3d8bbwe\Video.UI.exe      N/A      |
|    0   N/A  N/A      2836    C+G   ...Programs\Microsoft VS Code\Code.exe      N/A      |
|    0   N/A  N/A      5584    C+G   ...on\125.0.2535.79\msedgewebview2.exe      N/A      |
|    0   N/A  N/A      5876    C+G   C:\Windows\explorer.exe                     N/A      |
|    0   N/A  N/A      7912    C+G   ...oogle\Chrome\Application\chrome.exe      N/A      |
|    0   N/A  N/A      9012    C+G   ...2txyewy\StartMenuExperienceHost.exe      N/A      |
|    0   N/A  N/A      9400    C+G   ....Search_cw5n1h2txyewy\SearchApp.exe      N/A      |
|    0   N/A  N/A     12396    C+G   ...__8wekyb3d8bbwe\WindowsTerminal.exe      N/A      |
|    0   N/A  N/A     14452    C+G   ...CBS_cw5n1h2txyewy\TextInputHost.exe      N/A      |
|    0   N/A  N/A     16392    C+G   ...GeForce Experience\NVIDIA Share.exe      N/A      |
|    0   N/A  N/A     17580    C+G   ....Search_cw5n1h2txyewy\SearchApp.exe      N/A      |
|    0   N/A  N/A     19060    C+G   ...5n1h2txyewy\ShellExperienceHost.exe      N/A      |
|    0   N/A  N/A     20140    C+G   ...\Docker\frontend\Docker Desktop.exe      N/A      |
+-----------------------------------------------------------------------------------------+
  • From WSL Ubuntu-22.04
$ docker run --rm --gpus all ubuntu nvidia-smi
Sat Jun  1 14:00:12 2024
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 555.42.03              Driver Version: 555.85         CUDA Version: 12.5     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA GeForce GTX 1080 Ti     On  |   00000000:23:00.0  On |                  N/A |
| 40%   25C    P8             21W /  250W |    1475MiB /  11264MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+

+-----------------------------------------------------------------------------------------+
| Processes:                                                                              |
|  GPU   GI   CI        PID   Type   Process name                              GPU Memory |
|        ID   ID                                                               Usage      |
|=========================================================================================|
|    0   N/A  N/A        33      G   /Xwayland                                   N/A      |
|    0   N/A  N/A        38      G   /Xwayland                                   N/A      |
|    0   N/A  N/A        45      G   /Xwayland                                   N/A      |
|    0   N/A  N/A        62      G   /Xwayland                                   N/A      |
+-----------------------------------------------------------------------------------------+


$ docker run --rm --gpus all nvcr.io/nvidia/k8s/cuda-sample:nbody nbody -gpu -benchmark
Run "nbody -benchmark [-numbodies=<numBodies>]" to measure performance.
        -fullscreen       (run n-body simulation in fullscreen mode)
        -fp64             (use double precision floating point values for simulation)
        -hostmem          (stores simulation data in host memory)
        -benchmark        (run benchmark to measure performance)
        -numbodies=<N>    (number of bodies (>= 1) to run in simulation)
        -device=<d>       (where d=0,1,2.... for the CUDA device to use)
        -numdevices=<i>   (where i=(number of CUDA devices > 0) to use for simulation)
        -compare          (compares simulation results running once on the default GPU and once on the CPU)
        -cpu              (run n-body simulation on the CPU)
        -tipsy=<file.bin> (load a tipsy model file for simulation)

NOTE: The CUDA Samples are not meant for performance measurements. Results may vary when GPU Boost is enabled.

Error: only 0 Devices available, 1 requested.  Exiting.


$ docker run --gpus all --pull always --rm -it \
    --shm-size=1g --ulimit memlock=-1 --ulimit stack=67108864 \
    nvcr.io/nvidia/rapidsai/base:24.04-cuda12.2-py3.11
24.04-cuda12.2-py3.11: Pulling from nvidia/rapidsai/base
Digest: sha256:a9ec3f43016242a11354abf70f545abdd9623239b0a3a1c9a1da65ddd75f3d55
Status: Image is up to date for nvcr.io/nvidia/rapidsai/base:24.04-cuda12.2-py3.11
This container image and its contents are governed by the NVIDIA Deep Learning Container License.
By pulling and using the container, you accept the terms and conditions of this license:
https://developer.download.nvidia.com/licenses/NVIDIA_Deep_Learning_Container_License.pdf

Python 3.11.9 | packaged by conda-forge | (main, Apr 19 2024, 18:36:13) [GCC 12.3.0]
Type 'copyright', 'credits' or 'license' for more information
IPython 8.22.2 -- An enhanced Interactive Python. Type '?' for help.

In [1]: import cudf
/opt/conda/lib/python3.11/site-packages/cudf/utils/_ptxcompiler.py:61: UserWarning: Error getting driver and runtime versions:

stdout:



stderr:

Traceback (most recent call last):
  File "/opt/conda/lib/python3.11/site-packages/numba/cuda/cudadrv/driver.py", line 254, in ensure_initialized
    self.cuInit(0)
  File "/opt/conda/lib/python3.11/site-packages/numba/cuda/cudadrv/driver.py", line 327, in safe_cuda_api_call
    self._check_ctypes_error(fname, retcode)
  File "/opt/conda/lib/python3.11/site-packages/numba/cuda/cudadrv/driver.py", line 395, in _check_ctypes_error
    raise CudaAPIError(retcode, msg)
numba.cuda.cudadrv.driver.CudaAPIError: [500] Call to cuInit results in CUDA_ERROR_NOT_FOUND

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "<string>", line 4, in <module>
  File "/opt/conda/lib/python3.11/site-packages/numba/cuda/cudadrv/driver.py", line 292, in __getattr__
    self.ensure_initialized()
  File "/opt/conda/lib/python3.11/site-packages/numba/cuda/cudadrv/driver.py", line 258, in ensure_initialized
    raise CudaSupportError(f"Error at driver init: {description}")
numba.cuda.cudadrv.error.CudaSupportError: Error at driver init: Call to cuInit results in CUDA_ERROR_NOT_FOUND (500)


Not patching Numba
  warnings.warn(msg, UserWarning)
/opt/conda/lib/python3.11/site-packages/cudf/utils/gpu_utils.py:149: UserWarning: No NVIDIA GPU detected
  warnings.warn("No NVIDIA GPU detected")

In [2]: !nvidia-smi
Sat Jun  1 14:01:04 2024
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 555.42.03              Driver Version: 555.85         CUDA Version: 12.5     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA GeForce GTX 1080 Ti     On  |   00000000:23:00.0  On |                  N/A |
| 40%   25C    P8             20W /  250W |    1484MiB /  11264MiB |      6%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+

+-----------------------------------------------------------------------------------------+
| Processes:                                                                              |
|  GPU   GI   CI        PID   Type   Process name                              GPU Memory |
|        ID   ID                                                               Usage      |
|=========================================================================================|
|    0   N/A  N/A        33      G   /Xwayland                                   N/A      |
|    0   N/A  N/A        38      G   /Xwayland                                   N/A      |
|    0   N/A  N/A        45      G   /Xwayland                                   N/A      |
|    0   N/A  N/A        62      G   /Xwayland                                   N/A      |
+-----------------------------------------------------------------------------------------+
  • From WSL Ubuntu-24.04
$ docker run --gpus all --pull always --rm -it \
    --shm-size=1g --ulimit memlock=-1 --ulimit stack=67108864 \
    nvcr.io/nvidia/rapidsai/base:24.04-cuda12.2-py3.11
24.04-cuda12.2-py3.11: Pulling from nvidia/rapidsai/base
24.04-cuda12.2-py3.11: Pulling from nvidia/rapidsai/base
Digest: sha256:a9ec3f43016242a11354abf70f545abdd9623239b0a3a1c9a1da65ddd75f3d55
Status: Image is up to date for nvcr.io/nvidia/rapidsai/base:24.04-cuda12.2-py3.11
This container image and its contents are governed by the NVIDIA Deep Learning Container License.
By pulling and using the container, you accept the terms and conditions of this license:
https://developer.download.nvidia.com/licenses/NVIDIA_Deep_Learning_Container_License.pdf

Python 3.11.9 | packaged by conda-forge | (main, Apr 19 2024, 18:36:13) [GCC 12.3.0]
Type 'copyright', 'credits' or 'license' for more information
IPython 8.22.2 -- An enhanced Interactive Python. Type '?' for help.

In [1]: import cudf
/opt/conda/lib/python3.11/site-packages/cudf/utils/_ptxcompiler.py:61: UserWarning: Error getting driver and runtime versions:

stdout:



stderr:

Traceback (most recent call last):
  File "/opt/conda/lib/python3.11/site-packages/numba/cuda/cudadrv/driver.py", line 254, in ensure_initialized
    self.cuInit(0)
  File "/opt/conda/lib/python3.11/site-packages/numba/cuda/cudadrv/driver.py", line 327, in safe_cuda_api_call
    self._check_ctypes_error(fname, retcode)
  File "/opt/conda/lib/python3.11/site-packages/numba/cuda/cudadrv/driver.py", line 395, in _check_ctypes_error
    raise CudaAPIError(retcode, msg)
numba.cuda.cudadrv.driver.CudaAPIError: [500] Call to cuInit results in CUDA_ERROR_NOT_FOUND

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "<string>", line 4, in <module>
  File "/opt/conda/lib/python3.11/site-packages/numba/cuda/cudadrv/driver.py", line 292, in __getattr__
    self.ensure_initialized()
  File "/opt/conda/lib/python3.11/site-packages/numba/cuda/cudadrv/driver.py", line 258, in ensure_initialized
    raise CudaSupportError(f"Error at driver init: {description}")
numba.cuda.cudadrv.error.CudaSupportError: Error at driver init: Call to cuInit results in CUDA_ERROR_NOT_FOUND (500)


Not patching Numba
  warnings.warn(msg, UserWarning)
/opt/conda/lib/python3.11/site-packages/cudf/utils/gpu_utils.py:149: UserWarning: No NVIDIA GPU detected
  warnings.warn("No NVIDIA GPU detected")

In [2]: !nvidia-smi
Sat Jun  1 14:22:59 2024
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 555.42.03              Driver Version: 555.85         CUDA Version: 12.5     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA GeForce GTX 1080 Ti     On  |   00000000:23:00.0  On |                  N/A |
| 40%   25C    P8             17W /  250W |    1632MiB /  11264MiB |      3%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+

+-----------------------------------------------------------------------------------------+
| Processes:                                                                              |
|  GPU   GI   CI        PID   Type   Process name                              GPU Memory |
|        ID   ID                                                               Usage      |
|=========================================================================================|
|    0   N/A  N/A        33      G   /Xwayland                                   N/A      |
|    0   N/A  N/A        38      G   /Xwayland                                   N/A      |
|    0   N/A  N/A        45      G   /Xwayland                                   N/A      |
|    0   N/A  N/A        62      G   /Xwayland                                   N/A      |
+-----------------------------------------------------------------------------------------+
  • From WSL (both distros: Ubuntu-22.04 and Ubuntu-24.04):
docker run --gpus all --pull always --rm -it \
    --shm-size=1g --ulimit memlock=-1 --ulimit stack=67108864 \
    nvcr.io/nvidia/rapidsai/base:24.04-cuda12.2-py3.11 nvidia-smi

24.04-cuda12.2-py3.11: Pulling from nvidia/rapidsai/base
Digest: sha256:a9ec3f43016242a11354abf70f545abdd9623239b0a3a1c9a1da65ddd75f3d55
Status: Image is up to date for nvcr.io/nvidia/rapidsai/base:24.04-cuda12.2-py3.11
This container image and its contents are governed by the NVIDIA Deep Learning Container License.
By pulling and using the container, you accept the terms and conditions of this license:
https://developer.download.nvidia.com/licenses/NVIDIA_Deep_Learning_Container_License.pdf

Sat Jun  1 14:36:23 2024
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 555.42.03              Driver Version: 555.85         CUDA Version: 12.5     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA GeForce GTX 1080 Ti     On  |   00000000:23:00.0  On |                  N/A |
| 40%   24C    P8             22W /  250W |    1637MiB /  11264MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+

+-----------------------------------------------------------------------------------------+
| Processes:                                                                              |
|  GPU   GI   CI        PID   Type   Process name                              GPU Memory |
|        ID   ID                                                               Usage      |
|=========================================================================================|
|    0   N/A  N/A        33      G   /Xwayland                                   N/A      |
|    0   N/A  N/A        38      G   /Xwayland                                   N/A      |
|    0   N/A  N/A        45      G   /Xwayland                                   N/A      |
|    0   N/A  N/A        62      G   /Xwayland                                   N/A      |
+-----------------------------------------------------------------------------------------+
@adriantorrie adriantorrie added ? - Needs Triage Need team to review and classify bug Something isn't working labels Jun 1, 2024
@raydouglass
Copy link
Member

Hi @adriantorrie,

I'm not very familiar with WSL2, but I see that you are using a NVIDIA GeForce GTX 1080 Ti which is a Pascal generation GPU.

Unfortunately, Pascal support was dropped starting with RAPIDS 24.02 (https://docs.rapids.ai/notices/rsn0034/). You could try a 23.12 image such as rapidsai/base:23.12-cuda12.0-py3.10, but it's not officially supported anymore.

@adriantorrie
Copy link
Author

Cool, I'll give it a go.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
? - Needs Triage Need team to review and classify bug Something isn't working
Projects
None yet
Development

No branches or pull requests

2 participants