From 3ba3e27c5a20d7064836e70c4d637539f7d85347 Mon Sep 17 00:00:00 2001 From: rasmus-kirk Date: Fri, 31 Jan 2025 16:32:04 +0100 Subject: [PATCH] Fixed CI and updated slides --- flake.lock | 27 +++++++++-------- slides/slides.md | 79 +++++++++++++++++++++++++++++++++++++++++++++++- 2 files changed, 93 insertions(+), 13 deletions(-) diff --git a/flake.lock b/flake.lock index 6685f17..ff719ee 100644 --- a/flake.lock +++ b/flake.lock @@ -8,14 +8,15 @@ "rust-overlay": "rust-overlay" }, "locked": { - "path": "./code", + "lastModified": 1, + "narHash": "sha256-h9jRc0LkpMXB+z4KnepKuX9Papst3+h906R9Ntnh/Do=", + "path": "/nix/store/yxknwk8mdxmc3fiihcyzl2k26vc4448g-source/code", "type": "path" }, "original": { - "path": "./code", + "path": "/nix/store/yxknwk8mdxmc3fiihcyzl2k26vc4448g-source/code", "type": "path" - }, - "parent": [] + } }, "nixpkgs": { "locked": { @@ -40,14 +41,15 @@ ] }, "locked": { - "path": "./report", + "lastModified": 1, + "narHash": "sha256-tdQw23Y0VGrrGRBbtOvTAEEU4IXJ5Dns8U6GwZnZQkI=", + "path": "/nix/store/yxknwk8mdxmc3fiihcyzl2k26vc4448g-source/report", "type": "path" }, "original": { - "path": "./report", + "path": "/nix/store/yxknwk8mdxmc3fiihcyzl2k26vc4448g-source/report", "type": "path" - }, - "parent": [] + } }, "root": { "inputs": { @@ -86,14 +88,15 @@ ] }, "locked": { - "path": "./slides", + "lastModified": 1, + "narHash": "sha256-5xhg0ZegCEAW3GY6KKkw34UOiH4mz9z9wJ2SkXsoJak=", + "path": "/nix/store/yxknwk8mdxmc3fiihcyzl2k26vc4448g-source/slides", "type": "path" }, "original": { - "path": "./slides", + "path": "/nix/store/yxknwk8mdxmc3fiihcyzl2k26vc4448g-source/slides", "type": "path" - }, - "parent": [] + } }, "website-builder": { "inputs": { diff --git a/slides/slides.md b/slides/slides.md index 1acf0d1..d69eb27 100644 --- a/slides/slides.md +++ b/slides/slides.md @@ -224,7 +224,84 @@ As for the $\ASDLDecider$, it just runs $\PCDLCheck$ on the provided accumulator, which represents a evaluation proof i.e. an instance. This check will always pass, as the prover constructed it honestly. -## Soundness proof +## Soundness proof (1/?) + +Let $\CM = (\CMSetup, \CMCommit)$ be a perfectly binding commitment scheme. Fix +a maximum degree $D \in \Nb$ and a random oracle $\rho$ that takes commitments +from $\CM$ to $F_\pp$. Then for every family of functions $\{f_\pp\}_\pp$ +and fields $\{F_\pp\}_\pp$ where: + +- $f_\pp \in \Mc \to F_\pp^{\leq D}[X]$ +- $F \in \Nb \to \Nb$ +- $|F_\pp| \geq F(\l)$ + +That is, for all functions, $f_\pp$, that takes a message, $\Mc$ as input and +outputs a maximum D-degree polynomial. Also, usually $|F_\pp| \approx F(\l)$. +For every message format $L$ and computationally unbounded $t$-query oracle +algorithm $\Ac$, the following holds: +$$ +\Pr\left[ + \begin{array}{c} + p \neq 0 \\ + \land \\ + p(z) = 0 + \end{array} + \middle| + \begin{array}{c} + \rho \from \mathcal{U}(\l) \\ + \pp_\CM \gets \CMSetup(1^\l, L) \\ + (m, \omega) \gets \Ac^\rho(\pp_\CM) \\ + C \gets \CMCommit(m, \o) \\ + z \in F_{\pp} \from \rho(C) \\ + p := f_{\pp}(m) + \end{array} +\right] \leq \sqrt{\frac{D(t+1)}{F(\l)}} +$$ + +## Soundness proof (1/?) + +$$ +\Pr \left[ + \begin{array}{c} + \ASDLVerifier^{\rho_1}((q_{\acc_{i-1}} \cat \vec{q}), \acc_i) = \top, \\ + \ASDLDecider^{\rho_1}(\acc_i) = \top \\ + \land \\ + \exists i \in [n] : \Phi_\AS(q_i) = \bot + \end{array} +\right] \leq \negl(\l) +$$ +Given: +$$ +\begin{alignedat}{4} + &\rho_0 &&\leftarrow \Uc(\l), &&\quad \rho_1 &&\leftarrow \Uc(\l), \\ + &\pp_\PC &&\leftarrow \PCDLSetup^{\rho_0}(1^\l, D), &&\quad \pp_\AS &&\leftarrow \ASDLSetup^{\rho_1}(1^\l, \pp_\PC), \\ + &(\vec{q}, \acc_{i-1}, \acc_i) &&\leftarrow \Ac^{\rho_1}(\pp_\AS, \pp_\PC), &&\quad q_{acc_{i-1}} &&\leftarrow \ToInstance(\acc_{i-1}) +\end{alignedat} +$$ + +- We call the probability that the adversary $\Ac$ wins the above game + $\d$. We bound $\d$ by constructing two adversaries, $\Bc_1, \Bc_2$, for + the zero-finding game. Assuming: + - $\Pr[\Bc_1 \text{ wins} \lor \Bc_2 \text{wins}] = \delta - \negl(\l)$ + - $\Pr[\Bc_1 \text{ wins} \lor \Bc_2 \text{wins}] = 0$ + +## Soundness Proof (3/?) + + +$$ +\begin{aligned} + \Pr[\Bc_1 \text{ wins} \lor \Bc_2 \text{ wins}] &= \Pr[\Bc_1 \text{ wins}] + \Pr[\Bc_2\text{ wins}] - \Pr[\Bc_1 \text{ wins} \land \Bc_2 \text{ wins}]\\ + \Pr[\Bc_1 \text{ wins} \lor \Bc_2 \text{ wins}] &= \Pr[\Bc_1 \text{ wins}] + \Pr[\Bc_2\text{ wins}] - 0 \\ + \delta - \negl(\l) &\leq \sqrt{\frac{D(t+1)}{F(\l)}} + \sqrt{\frac{D(t+1)}{F(\l)}} \\ + \delta - \negl(\l) &\leq 2 \cdot \sqrt{\frac{D(t+1)}{|\Fb_q|}} \\ + \delta &\leq 2 \cdot \sqrt{\frac{D(t+1)}{|\Fb_q|}} + \negl(\l) \\ +\end{aligned} +$$ + +Meaning that $\delta$ is negligible, since $q = |\Fb_q|$ is superpolynomial +in $\l$. + +## Soundness Proof (3/?) ## Efficiency analysis