-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathpreprocess-dataset.py
392 lines (388 loc) · 17 KB
/
preprocess-dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
import os
import optparse
import _pickle as cPickle
import numpy as np
import networkx as nx
"""
Extract labeled neighborhood graphs
--------------------------------------
* k neighbors
(option-1) select neighbors from only 1-hop neighbors or upto k by BFS?
(option-2) select according to 1-WL[occurence of 1-WL labels] or degree?
(option-3) assign smaller or larger value of (option-1) higher priority?
* node labels
* edge labels
* node attributes
"""
GDIR = 'proc'
DATASET_DIR = 'dataset'
DATASET_LIST = ['MUTAG', 'PTC_MR', 'PROTEINS', 'NCI1', 'DD', 'IMDB-BINARY', 'IMDB-MULTI', 'REDDIT-BINAY', 'COLLAB', 'Compound_Alk-Alc', 'Compound_Asym-Sym']
def parse_arg():
parser = optparse.OptionParser()
parser.add_option('-n', dest='dataset', help='specify the name of dataset in one of {}'.format(DATASET_LIST))
parser.add_option('-k', dest='K', help='the #neighbor in the local neighborhoods')
parser.add_option('-s', dest='sort_vertex', action="store_true", default=False, help='sort all vertex before processing? [Y-general, N-visualization]')
(options, args) = parser.parse_args()
return options
def G_to_NX_sparse(X, Y):
"""convert sparse adj matrix to NetworkX Graph"""
Gs = []
N = len(Y)
for n in range(N):
x = X[n]
G = nx.DiGraph()
for i,j,w in x:
G.add_edge(i,j, weight=w)
Gs.append(G)
return Gs, Y
def gen_compound(name, N=50, nP=10):
"""
(1) Alkane vs Alcohol
N: the #carbon atom in compound, ex: N=50 generates compounds of different length from 1 to 50 carbons
P: # of permutation to relabeling the vertex order for each generated compound
----------------------------------------------
(2) Asymmetric Isomer vs Symmetric Isomer
N: the #carbon atom in compound, ex: N=50 generates compounds of different length from 1 to 50 carbons
P: # of permutation to relabeling the vertex order for each generated compound
"""
def gen_alcohol(nC): # C_n H_2n+1 OH
G, nlabel = nx.Graph(), {}
for i in range(nC):
c = i*3+1
G.add_edge(c,c+1,weight=1)
G.add_edge(c,c+2,weight=1)
nlabel[c] = 'C'
nlabel[c+1] = 'H'
nlabel[c+2] = 'H'
if i == 0:
G.add_edge(c,c-1,weight=1)
nlabel[c-1] = 'H'
else:
G.add_edge(c,c-3,weight=1)
if i == nC-1:
G.add_edge(c,c+3,weight=1)
G.add_edge(c+3,c+4,weight=1)
nlabel[c+3] = 'O'
nlabel[c+4] = 'H'
return G, nlabel
def gen_alkane(nC): # C_n H_2n+2
G, nlabel = nx.Graph(), {}
for i in range(nC):
c = i*3+1
G.add_edge(c,c+1,weight=1)
G.add_edge(c,c+2,weight=1)
nlabel[c] = 'C'
nlabel[c+1] = 'H'
nlabel[c+2] = 'H'
if i == 0:
G.add_edge(c,c-1,weight=1)
nlabel[c-1] = 'H'
else:
G.add_edge(c,c-3,weight=1)
if i == nC-1:
G.add_edge(c,c+3,weight=1)
nlabel[c+3] = 'H'
return G, nlabel
def gen_asym(nC):
G, nlabel = nx.Graph(), {}
cc = np.random.randint(nC)
nlabel[nC*2+1] = 'C'
for i in range(nC*2+1):
nlabel[i] = 'C'
if i > 0:
G.add_edge(i,i-1,weight=1)
if i == cc:
G.add_edge(i,nC*2+1,weight=1)
return G, nlabel
def gen_sym(nC):
G, nlabel = nx.Graph(), {}
nlabel[nC*2+1] = 'C'
for i in range(nC*2+1):
nlabel[i] = 'C'
if i > 0:
G.add_edge(i,i-1,weight=1)
if i == nC:
G.add_edge(i,nC*2+1,weight=1)
return G, nlabel
def permute(G, nlabel):
A = nx.adjacency_matrix(G).todense()
N = A.shape[0]
nids = list(G.nodes())
order = np.random.permutation(nids)
op = {nid:i for i,nid in enumerate(nids)}
mp = {nid:i for i,nid in enumerate(order)}
mm = {nid:nids[i] for i,nid in enumerate(order)}
rA = np.zeros_like(A)
for i in range(N):
for j in range(N):
rA[i,j] = A[mp[nids[i]],mp[nids[j]]]
rnlabel = {mm[nid]:nlabel[mm[nid]] for nid in nids}
rG = nx.from_numpy_matrix(rA)
return rG, rnlabel
cls = name.split('-')
Gs, Ys, nlabels = [], [], []
if name == 'Asym-Sym':
for i in range(N):
G, nlabel = gen_asym(5+i)
Gs.append(G)
Ys.append(0)
nlabels.append(nlabel)
for p in range(nP-1):
pG, pL = permute(G, nlabel)
Gs.append(G)
Ys.append(0)
nlabels.append(pL)
G, nlabel = gen_sym(5+i)
Gs.append(G)
Ys.append(1)
nlabels.append(nlabel)
for p in range(nP-1):
pG, pL = permute(G, nlabel)
Gs.append(G)
Ys.append(1)
nlabels.append(pL)
elif name == 'Alk-Alc':
for n in range(1,N):
for icl,fn in enumerate([gen_alkane, gen_alcohol]):
G, nlabel = fn(2*n)
Gs.append(G)
Ys.append(icl)
nlabels.append(nlabel)
for p in range(nP-1):
pG, pL = permute(G, nlabel)
Gs.append(G)
Ys.append(icl)
nlabels.append(pL)
if not os.path.exists('{}/{}'.format(DATASET_DIR, name)):
os.makedirs('{}/{}'.format(DATASET_DIR, name))
cPickle.dump(Gs, open('{}/{}/N{}-P{}-Gs.pkl'.format(DATASET_DIR, name, N, nP), 'wb'))
cPickle.dump(nlabels, open('{}/{}/N{}-P{}-nlabels.pkl'.format(DATASET_DIR, name, N, nP), 'wb'))
cPickle.dump(Ys, open('{}/{}/N{}-P{}-labels.pkl'.format(DATASET_DIR, name, N, nP), 'wb'))
def read_G_dataset(name):
"""
loads graph classification dataset
---------------------------
returns [NetworkX Gs, graph labels]
"""
if not os.path.exists('{}/{}/{}-Gs.pkl'.format(DATASET_DIR, GDIR, name)):
if name in ['MUTAG', 'PTC_MR', 'PROTEINS', 'NCI1', 'NCI109', 'ENZYMES', 'DD',
'COLLAB', 'REDDIT-BINARY', 'IMDB-BINARY', 'IMDB-MULTI']:
with open('{0}/{1}/{1}_graph_labels.txt'.format(DATASET_DIR, name), 'r') as f:
data = f.readlines()
Y = [(int(line)) for line in data]
with open('{0}/{1}/{1}_graph_indicator.txt'.format(DATASET_DIR, name), 'r') as f:
data = f.readlines()
NG = {i+1:int(data[i]) for i in range(len(data))}
Fs, nlabels = {}, []
# node label
if os.path.exists('{0}/{1}/{1}_node_labels.txt'.format(DATASET_DIR, name)):
with open('{0}/{1}/{1}_node_labels.txt'.format(DATASET_DIR, name), 'r') as f:
for i,line in enumerate(f):
nid, gid = i+1, NG[i+1]
if gid not in Fs.keys():
Fs[gid]={}
Fs[gid][nid]=int(line)
nlabels.append(int(line))
Fs = [Fs[k] for k in sorted(list(Fs.keys()))]
else:
nlabels = [1]
Fs = None
cPickle.dump(nlabels, open('{}/{}/{}-nlabels.pkl'.format(DATASET_DIR, GDIR, name), 'wb'))
# node attributes
Atts = {}
# node label
if os.path.exists('{0}/{1}/{1}_node_attributes.txt'.format(DATASET_DIR, name)):
with open('{0}/{1}/{1}_node_attributes.txt'.format(DATASET_DIR, name), 'r') as f:
for i,line in enumerate(f):
nid, gid = i+1, NG[i+1]
if gid not in Atts.keys():
Atts[gid]={}
Atts[gid][nid]=[float(x) for x in line.split(',')]
Atts = [Atts[k] for k in sorted(list(Atts.keys()))]
else:
Atts = None
# edge label
EW = []
if os.path.exists('{0}/{1}/{1}_edge_labels.txt'.format(DATASET_DIR, name)):
with open('{0}/{1}/{1}_edge_labels.txt'.format(DATASET_DIR, name), 'r') as f:
for line in f:
EW.append(int(line)+1)
else:
EW = [1]
cPickle.dump(EW, open('{}/{}/{}-elabels.pkl'.format(DATASET_DIR, GDIR, name), 'wb'))
X = {}
with open('{0}/{1}/{1}_A.txt'.format(DATASET_DIR, name), 'r') as f:
for i,line in enumerate(f):
els = line.split(',')
a, b = int(els[0]), int(els[1])
if NG[a] not in X.keys():
X[NG[a]] = []
if NG[b] not in X.keys():
X[NG[b]] = []
w = EW[i] if len(EW)>1 else 1
for gid in list(set([NG[a],NG[b]])):
X[gid] += [(a,b,w),(b,a,w)]
if NG[a] != NG[b]:
print('{} and {} cross graphs'.format(a, b))
X = [X[k] for k in sorted(list(X.keys()))]
Gs, Y = G_to_NX_sparse(X, Y)
elif 'Compound' in name:
els = name.split('_')
N, permute = 50, 10
if not os.path.exists('{}/{}/N{}-P{}-nlabels.pkl'.format(DATASET_DIR, els[1], N, permute)):
gen_compound(els[1], N, permute)
Gs, Fs, Y, Atts = cPickle.load(open('{}/{}/N{}-P{}-Gs.pkl'.format(DATASET_DIR, els[1], N, permute), 'rb')), cPickle.load(open('{}/{}/N{}-P{}-nlabels.pkl'.format(DATASET_DIR, els[1], N, permute), 'rb')), cPickle.load(open('{}/{}/N{}-P{}-labels.pkl'.format(DATASET_DIR, els[1], N, permute), 'rb')), None
nlabels = [x for F in Fs for x in F.values()]
cPickle.dump(nlabels, open('{}/{}/{}-nlabels.pkl'.format(DATASET_DIR, GDIR, name), 'wb'))
EW = [1]
cPickle.dump(EW, open('{}/{}/{}-elabels.pkl'.format(DATASET_DIR, GDIR, name), 'wb'))
else:
raise Exception('{} undefined'.format(name))
else:
Gs, Y, Fs, Atts = cPickle.load(open('{}/{}/{}-Gs.pkl'.format(DATASET_DIR, GDIR, name), 'rb')), cPickle.load(open('{}/{}/{}-label.pkl'.format(DATASET_DIR, GDIR, name), 'rb')), cPickle.load(open('{}/{}/{}-Fs.pkl'.format(DATASET_DIR, GDIR, name), 'rb')), cPickle.load(open('{}/{}/{}-Atts.pkl'.format(DATASET_DIR, GDIR, name), 'rb'))
return Gs, Y, Fs, Atts
def rcpv_fld(G, F, Att, ego, order_dict, idx, i, k=3):
"""
return node i's
(1) k neighbors
(2) neighborhood
(3) node labels of (1)
-------------------------------------------------------------
[parameters]
G: entire graph
F: node labels in G
ego: neighborhoods in G
order_dict: ordering of neighbors [degree or 1-WL]
idx: relabeling of node id
"""
def get_nbr(G, cur_ns):
"""grab 1-hop ahead local neighborhood"""
nxt_ns = []
for x in cur_ns:
nxt_ns += G[x]
nxt_ns = list(set(nxt_ns))
return nxt_ns
######### selection of neighbors ##########
# get only 1-hop neighbors
ns = get_nbr(G, [i])
"""
# BFS selection of neighbors upto k
ns = []
tmp = [i]
prev = 1
while len(ns) < k:
tmp = get_nbr(G, tmp)
ns += tmp
ns = list(set(ns))
if prev == len(ns):
break
prev = len(ns)
"""
######### neighbor normalization ##########
# sorting order
SMALL = True # True: small value first / False: large value first
SELF = True # True: include self embedding / False: not always
ns = [idx[x] for x in ns if x in idx.keys()]
if not SELF:
ns += [idx[i]]
ds = [order_dict[x] for x in ns]
top = np.argsort(ds)
if not SMALL:
top = top[::-1]
nbr = [ns[x] for x in top[:k]] if not SELF else [idx[i]]+[ns[x] for x in top[:k-1]]
######### extract node labels of neighbors ##########
nnlbl = [F[x] for x in nbr]
######### extract node attributes of neighbors ##########
att = np.array([Att[x] for x in nbr]) if Att is not None else None
######### extract neighborhoods ##########
# padding to k neighbors
while len(nbr) < k:
nbr += [-1]
# adj of neighborhood
adj = np.zeros((k,k))
ego_i = {(k,v):w for k,v,w in ego[idx[i]]}
for x in range(k):
for y in range(k):
c = ego_i[(nbr[x], nbr[y])] if (nbr[x], nbr[y]) in ego_i.keys() else 0
adj[x,y] = c
return nbr, adj, nnlbl, att
def proc_G_dataset(name, k=3, sort_vertex=False):
def dump(Gs, labels, Fs, Atts, name, k):
if not os.path.exists('{}/{}/{}-RWL.pkl'.format(DATASET_DIR, GDIR, name)):
WL, NWL = {}, []
# calc freq of each label in 1-WL
for gi in range(len(Gs)):
G, nwl = Gs[gi], {}
F = Fs[gi] if Fs is not None else None
for nid in G.nodes():
f_self = F[nid] if F is not None else '1'
f_nbr = list(sorted([F[nbr_id] for nbr_id in G.neighbors(nid)])) if F is not None else ['1' for nbr_id in G.neighbors(nid)]
agg_nbr = ''.join(str(x) for x in [f_self]+f_nbr)
nwl[nid] = agg_nbr
if agg_nbr not in WL.keys():
WL[agg_nbr] = 0
WL[agg_nbr] += 1
NWL.append(nwl)
RWL = [{k:WL[v] for k,v in nwl.items()} for nwl in NWL]
else:
RWL = cPickle.load(open('{}/{}/{}-RWL.pkl'.format(DATASET_DIR, GDIR, name), 'rb'))
degs, nbrs, adjs, nnlbls, atts, lbls, cnbrs = [], [], [], [], [], [], []
for gi in range(len(Gs)):
G, F, Att = Gs[gi], Fs[gi] if Fs is not None else None, Atts[gi] if Atts is not None else None
nids, degs = [], []
nodes = G.nodes()
ks = F.keys() if F is not None else nodes
for i in ks:
nids.append(i)
degs.append(G.degree(i) if i in nodes else 0)
if sort_vertex:
# sort vertex by degree
idx = {}
for i,oid in enumerate(np.argsort(degs)[::-1]):
idx[nids[oid]] = i
else:
idx = {nid:i for i,nid in enumerate(nodes)}
F = {idx[k]:v for k,v in F.items()} if F is not None else {idx[k]:1 for k in idx.keys()}
Att = {idx[k]:v for k,v in Att.items()} if Att is not None else None
ego = {idx[i]:[(idx[k],idx[v],w['weight']) for k,v,w in nx.ego_graph(G, i).edges(data=True)] for i in G.nodes()}
########### sorting dictionary for neighbor normalization #################
deg = {idx[i]:G.degree(i) for i in G.nodes()} # by degree
WL = {idx[i]:RWL[gi][i] for i in G.nodes()} # by 1-WL
ORDER = WL
NBR, ADJ, NNLBL, ATT, CNBR = {}, {}, {}, {}, {}
node_num = G.order()
for i in G.nodes():
nbr, adj, nnlbl, att = rcpv_fld(G, F, Att, ego, ORDER, idx, i, k=k)
NBR[idx[i]] = nbr
ADJ[idx[i]] = adj
NNLBL[idx[i]] = nnlbl
ATT[idx[i]] = att
tcnbr = [x for x in range(max(0,idx[i]-int(k/2)), min(node_num,idx[i]+(k-int(k/2))))]
tcnbr += [-1 for x in range(k-len(tcnbr))]
CNBR[idx[i]] = tcnbr
nbrs.append(NBR)
cnbrs.append(CNBR)
adjs.append(ADJ)
nnlbls.append(NNLBL)
atts.append(ATT)
lbls.append(labels[gi])
if gi % 1000 == 0 and gi:
print('{} done'.format(gi))
if not os.path.exists('{}/{}/{}-Gs.pkl'.format(DATASET_DIR, GDIR, name)):
cPickle.dump(Gs, open('{}/{}/{}-Gs.pkl'.format(DATASET_DIR, GDIR, name), 'wb'))
cPickle.dump(lbls, open('{}/{}/{}-label.pkl'.format(DATASET_DIR, GDIR, name), 'wb'))
cPickle.dump(Fs, open('{}/{}/{}-Fs.pkl'.format(DATASET_DIR, GDIR, name), 'wb'))
cPickle.dump(Atts, open('{}/{}/{}-Atts.pkl'.format(DATASET_DIR, GDIR, name), 'wb'))
cPickle.dump(RWL, open('{}/{}/{}-RWL.pkl'.format(DATASET_DIR, GDIR, name), 'wb'))
cPickle.dump(nbrs, open('{}/{}/{}-{}.pkl'.format(DATASET_DIR, GDIR, name, k), 'wb'))
cPickle.dump(cnbrs, open('{}/{}/{}-{}-conv.pkl'.format(DATASET_DIR, GDIR, name, k), 'wb'))
cPickle.dump(adjs, open('{0}/{1}/{2}-{3}x{3}.pkl'.format(DATASET_DIR, GDIR, name, k), 'wb'))
cPickle.dump(nnlbls, open('{}/{}/{}-{}-nnlabel.pkl'.format(DATASET_DIR, GDIR, name, k), 'wb'))
cPickle.dump(atts, open('{}/{}/{}-{}-att.pkl'.format(DATASET_DIR, GDIR, name, k), 'wb'))
if not os.path.exists('{}/{}'.format(DATASET_DIR, GDIR)):
os.makedirs('{}/{}'.format(DATASET_DIR, GDIR))
Gs, labels, Fs, Atts = read_G_dataset(name=name)
dump(Gs, labels, Fs, Atts, name, k)
print('dumping training set done')
opt = parse_arg()
proc_G_dataset(opt.dataset, k=int(opt.K), sort_vertex=opt.sort_vertex)