-
Notifications
You must be signed in to change notification settings - Fork 69
/
Copy pathapp.py
89 lines (78 loc) · 2.85 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel
from argparse import ArgumentParser
def get_args():
parser = ArgumentParser()
parser.add_argument("--port", type=int, default=7860)
parser.add_argument("--device", type=str, default='cuda', help='Device to run the model on')
parser.add_argument("--model", type=str, default='havenhq/mamba-chat', help='Model to use')
parser.add_argument(
"--share",
action="store_true",
default=False,
help="share your instance publicly through gradio",
)
try:
args = parser.parse_args()
except:
parser.print_help()
exit(0)
return args
if __name__ == "__main__":
args = get_args()
device = args.device
model_name = args.model
eos = "<|endoftext|>"
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.eos_token = eos
tokenizer.pad_token = tokenizer.eos_token
tokenizer.chat_template = AutoTokenizer.from_pretrained(
"HuggingFaceH4/zephyr-7b-beta"
).chat_template
model = MambaLMHeadModel.from_pretrained(
model_name, device=device, dtype=torch.float16
)
def chat_with_mamba(
user_message,
history: list[list[str]],
temperature: float = 0.9,
top_p: float = 0.7,
max_length: int = 2000,
):
history_dict: list[dict[str, str]] = []
for user_m, assistant_m in history:
history_dict.append(dict(role="user", content=user_m))
history_dict.append(dict(role="assistant", content=assistant_m))
history_dict.append(dict(role="user", content=user_message))
input_ids = tokenizer.apply_chat_template(
history_dict, return_tensors="pt", add_generation_prompt=True
).to(device)
out = model.generate(
input_ids=input_ids,
max_length=max_length,
temperature=temperature,
top_p=top_p,
eos_token_id=tokenizer.eos_token_id,
)
decoded = tokenizer.batch_decode(out)
assistant_message = (
decoded[0].split("<|assistant|>\n")[-1].replace(eos, "")
)
return assistant_message
demo = gr.ChatInterface(
fn=chat_with_mamba,
# examples=[
# "Explain what is state space model",
# "Nice to meet you!",
# "'Mamba is way better than ChatGPT.' Is this statement correct?",
# ],
additional_inputs=[
gr.Slider(minimum=0, maximum=1, step=0.1, value=0.9, label="temperature"),
gr.Slider(minimum=0, maximum=1, step=0.1, value=0.7, label="top_p"),
gr.Number(value=2000, label="max_length"),
],
title="Mamba Chat",
)
demo.launch(server_port=args.port, share=args.share)