-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathavx2.h
1033 lines (915 loc) · 23.6 KB
/
avx2.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include <immintrin.h>
#include <iostream>
#include <iomanip>
/**
* @brief Floating point (32 bit) SIMD types
*
* @note For AVX this corresponds to the __m256 vector
*/
/**
* @brief Extract a single float from a _mm256 vector
*
* @tparam imm Which value to extract
* @param v Input vector
* @return float Selected value
*/
template< int imm >
static inline float vec_extract( const __m256 v ) {
static_assert( imm >= 0 && imm < 8, "imm must be in the range [0..7]" );
// The compiler will (usually) optimize this and avoid the memory copy
alignas( __m256 ) float buf[8];
_mm256_store_ps( buf, v );
return buf[imm];
}
static inline float vec_extract( const __m256 v, int i ) {
union {
__m256 v;
float s[8];
} b;
b.v = v;
return b.s[i & 7];
}
/**
* @brief Writes the textual representation of vector v to os
*
* @param os Output stream
* @param v Float vector value
* @return std::ostream&
*/
static inline std::ostream& operator<<(std::ostream& os, const __m256 v) {
os << "[";
os << vec_extract<0>( v );
os << ", " << vec_extract<1>( v );
os << ", " << vec_extract<2>( v );
os << ", " << vec_extract<3>( v );
os << ", " << vec_extract<4>( v );
os << ", " << vec_extract<5>( v );
os << ", " << vec_extract<6>( v );
os << ", " << vec_extract<7>( v );
os << "]";
return os;
}
/**
* @brief Returns a zero valued vector
*
* @return __m256
*/
static inline __m256 vec_zero_float() {
return _mm256_setzero_ps();
}
/**
* @brief Create a vector with all elements equal to scalar value
*
* @param s
* @return __m256
*/
static inline __m256 vec_float( float s ) {
return _mm256_set1_ps(s);
}
/**
* @brief Create a float vector from an integer vector
*
* @param vi
* @return __m256
*/
static inline __m256 vec_float( __m256i vi ) {
return _mm256_cvtepi32_ps( vi );
}
/**
* @brief Create a vector from the scalar elements
*
* @param a
* @param b
* @param c
* @param d
* @param e
* @param f
* @param g
* @param h
* @return __m256
*/
static inline __m256 vec_float( float a, float b, float c, float d, float e, float f, float g, float h ) {
return _mm256_setr_ps(a, b, c, d, e, f, g, h);
}
/**
* @brief Loads vector from memory
*
* @warning The address must be aligned to a 32 byte boundary
*
* @param mem_addr
* @return __m256
*/
static inline __m256 vec_load( const float * mem_addr) {
return _mm256_load_ps( mem_addr );
}
/**
* @brief Stores vector to memory
*
* @warning The address must be aligned to a 32 byte boundary
*
* @param mem_addr
* @param a
*/
static inline __m256 vec_store( float * mem_addr, __m256 a ) {
_mm256_store_ps( mem_addr, a ); return a;
}
static inline __m256 vec_neg( __m256 a ) {
return _mm256_sub_ps( _mm256_setzero_ps(), a );
}
/**
* @brief Adds 2 vector values (a+b)
*
* @param a
* @param b
* @return __m256
*/
static inline __m256 vec_add( __m256 a, __m256 b ) {
return _mm256_add_ps(a,b);
}
/**
* @brief Adds scalar value (s) to all components of vector value (a).
*
* @param a
* @param b
* @return __m256
*/
static inline __m256 vec_add( __m256 a, float s ) {
return _mm256_add_ps(a,_mm256_set1_ps(s));
}
/**
* @brief Subtracts 2 vector values (a-b)
*
* @param a
* @param b
* @return __m256
*/
static inline __m256 vec_sub( __m256 a, __m256 b ) {
return _mm256_sub_ps(a,b);
}
/**
* @brief Multiplies 2 vector values (a*b)
*
* @param a
* @param b
* @return __m256
*/
static inline __m256 vec_mul( __m256 a, __m256 b ) {
return _mm256_mul_ps(a,b);
}
/**
* @brief Multiplies vector (a) by scalar value (s)
*
* @param a
* @param s
* @return __m256
*/
static inline __m256 vec_mul( __m256 a, float s ) {
return _mm256_mul_ps(a,_mm256_set1_ps(s));
}
/**
* @brief Divides 2 vector values (a/b)
*
* @param a
* @param b
* @return __m256
*/
static inline __m256 vec_div( __m256 a, __m256 b ) {
return _mm256_div_ps(a,b);
}
/**
* @brief Compares 2 vector values (by element) for equality (==)
*
* @param a
* @param b
* @return __m256i
*/
static inline __m256i vec_eq( __m256 a, __m256 b ) {
return _mm256_castps_si256( _mm256_cmp_ps(a,b,_CMP_EQ_OQ) );
}
/**
* @brief Compares 2 vector values (by element) for inequality (!=)
*
* @param a
* @param b
* @return __m256i
*/
static inline __m256i vec_ne( __m256 a, __m256 b ) {
return _mm256_castps_si256( _mm256_cmp_ps(a,b,_CMP_NEQ_OQ) );
}
/**
* @brief Compares 2 vector values (by element) for "greater-than" (>)
*
* @param a
* @param b
* @return __m256i
*/
static inline __m256i vec_gt( __m256 a, __m256 b ) {
return _mm256_castps_si256( _mm256_cmp_ps(a,b,_CMP_GT_OQ) );
}
/**
* @brief Compares 2 vector values (by element) for "greater of equal" (>=) and return mask
*
* @param a
* @param b
* @return Resulting mask, for each element i 0 if false, -1 if true
*/
static inline __m256i vec_ge( __m256 a, __m256 b ) {
return _mm256_castps_si256( _mm256_cmp_ps(a,b,_CMP_GE_OQ) );
}
/**
* @brief Compares 2 vector values (by element) for "greater of equal" (>=) and return v (float)
*
* @param a
* @param b
* @param v
* @return Result, for each element i, 0 if false and v[i] if true
*/
static inline __m256 vec_ge( __m256 a, __m256 b, __m256 v ) {
return _mm256_and_ps( _mm256_cmp_ps(a,b,_CMP_GE_OQ), v );
}
/**
* @brief Compares 2 vector values (by element) for "greater of equal" (>=) and return v (integer)
*
* @param a
* @param b
* @param vi
* @return Result, for each element i, 0 if false and v[i] if true
*/
static inline __m256i vec_ge( __m256 a, __m256 b, __m256i vi ) {
return _mm256_and_si256( _mm256_castps_si256( _mm256_cmp_ps(a,b,_CMP_GE_OQ) ), vi );
}
/**
* @brief Compares 2 vector values (by element) for "less than" (<) and return mask
*
* @param a
* @param b
* @return Resulting mask, for each element i 0 if false, -1 if true
*/
static inline __m256i vec_lt( __m256 a, __m256 b ) {
return _mm256_castps_si256( _mm256_cmp_ps(a,b,_CMP_LT_OQ) );
}
/**
* @brief Compares 2 vector values (by element) for "less than" (<) and return value
*
* @param a Value a
* @param b Value b
* @param v Result, for each element i, 0 if false and v[i] if true
* @return __m256
*/
static inline __m256 vec_lt( __m256 a, __m256 b, __m256 v ) {
return _mm256_and_ps( _mm256_cmp_ps(a,b,_CMP_LT_OQ), v );
}
/**
* @brief Compares 2 vector values (by element) for "less than" (<) and return value (integer)
*
* @param a Value a
* @param b Value b
* @param v Result, for each element i, 0 if false and v[i] if true
* @return __m256
*/
static inline __m256i vec_lt( __m256 a, __m256 b, __m256i vi ) {
return _mm256_and_si256( _mm256_castps_si256( _mm256_cmp_ps(a,b,_CMP_LT_OQ) ), vi );
}
/**
* @brief Compares 2 vector values (by element) for "less or equal" (<=)
*
* @param a
* @param b
* @return __m256
*/
static inline __m256i vec_le( __m256 a, __m256 b ) {
return _mm256_castps_si256( _mm256_cmp_ps(a,b,_CMP_LE_OQ) );
}
/**
* @brief Fused multiply add: (a*b)+c
*
* @param a
* @param b
* @param c
* @return __m256
*/
static inline __m256 vec_fmadd( __m256 a, __m256 b, __m256 c ) {
return _mm256_fmadd_ps( a, b, c );
}
/**
* @brief Fused multiply subtract: (a*b)-c
*
* @param a
* @param b
* @param c
* @return __m256
*/
static inline __m256 vec_fmsub( __m256 a, __m256 b, __m256 c ) {
return _mm256_fmsub_ps( a, b, c );
}
/**
* @brief Fused negate multiply add: -(a*b)+c
*
* @param a
* @param b
* @param c
* @return __m256
*/
static inline __m256 vec_fnmadd( __m256 a, __m256 b, __m256 c ) {
return _mm256_fnmadd_ps( a, b, c );
}
/**
* @brief Reciprocal (1/a)
*
* @param a
* @return __m256
*/
static inline __m256 vec_recp( const __m256 a )
{
// Full calculation
auto recp = _mm256_div_ps( _mm256_set1_ps( 1 ), a );
/*
// Fast estimate + 1 Newton-Raphson iteration
auto recp = _mm256_rcp_ps( a );
recp = _mm256_mul_ps(recp, _mm256_fnmadd_ps(recp, a, _mm256_set1_ps( 2 )));
*/
return recp;
}
/**
* @brief Reciprocal square root 1/sqrt(a)
*
* @param a
* @return __m256
*/
static inline __m256 vec_rsqrt( const __m256 a ) {
auto rsqrt = _mm256_div_ps( _mm256_set1_ps(1), _mm256_sqrt_ps(a) );
/*
// Fast estimate + 1 Newton-Raphson iteration
auto rsqrt = _mm256_rsqrt_ps( a );
auto const c1_2 = _mm256_set1_ps( 0.5 );
auto const c3 = _mm256_set1_ps( 3 );
rsqrt = _mm256_mul_ps( c1_2,
_mm256_mul_ps( rsqrt,
_mm256_fnmadd_ps( _mm256_mul_ps( rsqrt, rsqrt ), a, c3 )
)
);
*/
return rsqrt;
}
/**
* @brief Square root
*
* @param a
* @return __m256
*/
static inline __m256 vec_sqrt( const __m256 a ) {
return _mm256_sqrt_ps(a);
}
/**
* @brief Absolute value
*
* @param a
* @return __m256
*/
static inline __m256 vec_fabs( const __m256 a ) {
const __m256i mask = _mm256_set1_epi32 (~(1<<31) );
return _mm256_and_ps(a, _mm256_castsi256_ps(mask));
}
/**
* @brief Selects between vector elements of vectors a and b according to the mask
*
* @param a a vector
* @param b b vector
* @param mask selection mask, 0 selects a vector element, -1 selects b vector element
* @return __m256i
*/
static inline __m256 vec_select( const __m256 a, const __m256 b, const __m256i mask ) {
return _mm256_blendv_ps( a, b, _mm256_castsi256_ps(mask) );
}
/**
* @brief Add all vector elements
*
* @param a
* @return float
*/
static inline float vec_reduce_add( const __m256 a ) {
__m128 r = _mm_add_ps( _mm256_extractf128_ps(a, 1), _mm256_castps256_ps128(a));
r = _mm_hadd_ps( r, r );
r = _mm_hadd_ps( r, r );
return _mm_cvtss_f32( r );
}
/**
* @brief Gather values from base address + vector index
*
* @param base_addr
* @param vindex
* @return __m256
*/
static inline __m256 vec_gather( float const * base_addr, __m256i vindex ) {
// This has terrible performance
//__m256 v = _mm256_i32gather_ps( base_addr, vindex, 4 );
union { __m256i v; int s[8]; } index;
index.v = vindex;
__m128 lo = _mm_setr_ps (
base_addr[index.s[0]],
base_addr[index.s[1]],
base_addr[index.s[2]],
base_addr[index.s[3]]
);
__m128 hi = _mm_setr_ps (
base_addr[index.s[4]],
base_addr[index.s[5]],
base_addr[index.s[6]],
base_addr[index.s[7]]
);
__m256 v = _mm256_set_m128(hi,lo);
return v;
}
/**
* @brief Integer (32 bit) SIMD types
*
* @note For AVX this corresponds to the __m256i vector
*/
/**
* @brief Extract a single integer from a _mm256i vector
*
* @tparam imm Which value to extract
* @param v Input vector
* @return float Selected value
*/
template< int imm >
static inline int vec_extract( const __m256i v ) {
static_assert( imm >= 0 && imm < 8, "imm must be in the range [0..7]" );
// The compiler will (usually) optimize this and avoid the memory copy
alignas( __m256i ) int buf[8];
_mm256_store_si256( ( __m256i * ) buf, v );
return buf[imm];
}
static inline int vec_extract( const __m256i v, int i ) {
union {
__m256i v;
int32_t s[8];
} b;
b.v = v;
return b.s[i & 7];
}
/**
* @brief Writes the textual representation of vector v to os
*
* @param os Output stream
* @param v int vector value
* @return std::ostream&
*/
static inline
std::ostream& operator<<(std::ostream& os, const __m256i v) {
os << "[";
os << vec_extract<0>( v );
os << ", " << vec_extract<1>( v );
os << ", " << vec_extract<2>( v );
os << ", " << vec_extract<3>( v );
os << ", " << vec_extract<4>( v );
os << ", " << vec_extract<5>( v );
os << ", " << vec_extract<6>( v );
os << ", " << vec_extract<7>( v );
os << "]";
return os;
}
/**
* @brief Returns a zero valued vector
*
* @return __m256i
*/
static inline __m256i vec_zero_int() {
return _mm256_setzero_si256();
}
/**
* @brief Create a vector with all elements equal to scalar value
*
* @param a
* @return __m256i
*/
static inline __m256i vec_int( int s ) {
return _mm256_set1_epi32(s);
}
/**
* @brief Create a vector from the scalar elements
*
* @param a
* @param b
* @param c
* @param d
* @param e
* @param f
* @param g
* @param h
* @return __m256i
*/
static inline __m256i vec_int( int a, int b, int c, int d, int e, int f, int g, int h ){
return _mm256_setr_epi32( a, b, c, d, e, f, g, h );
}
/**
* @brief Loads vector from memory
*
* @warning The address must be aligned to a 32 byte boundary
*
* @param mem_addr
* @return __m256i
*/
static inline __m256i vec_load( const int * mem_addr) {
return _mm256_load_epi32( mem_addr );
}
/**
* @brief Stores vector to memory
*
* @warning The address must be aligned to a 32 byte boundary
*
* @param mem_addr
* @param a
*/
static inline __m256i vec_store( int * mem_addr, __m256i a ) {
_mm256_store_epi32( mem_addr, a ); return a;
}
/**
* @brief Adds 2 vector values (a+b)
*
* @param a
* @param b
* @return __m256i
*/
static inline __m256i vec_add( __m256i a, __m256i b ) {
return _mm256_add_epi32(a,b);
}
/**
* @brief Subtracts 2 vector values (a-b)
*
* @param a
* @param b
* @return __m256i
*/
static inline __m256i vec_sub( __m256i a, __m256i b ) {
return _mm256_sub_epi32(a,b);
}
/**
* @brief Adds scalar value (s) to all components of vector value (a).
*
* @param a
* @param b
* @return __m256i
*/
static inline __m256i vec_add( __m256i a, int s ) {
return _mm256_add_epi32(a, _mm256_set1_epi32(s) );
}
/**
* @brief Multiplies 2 vector values (a*b)
*
* @param a
* @param b
* @return __m256i
*/
static inline __m256i vec_mul( __m256i a, __m256i b ) {
return _mm256_mullo_epi32(a,b);
}
/**
* @brief Multiplies vector (a) by scalar value (s)
*
* @param a
* @param b
* @return __m256i
*/
static inline __m256i vec_mul( __m256i a, int s ) {
return _mm256_mullo_epi32(a, _mm256_set1_epi32(s) );
}
/**
* @brief Multiplies vector by 3
*
* @param a
* @return __m256i
*/
static inline __m256i vec_mul3( __m256i a ) {
return _mm256_add_epi32( _mm256_add_epi32( a, a ), a );
}
/**
* @brief Compares 2 vector values (by element) for equality (==)
*
* @param a
* @param b
* @return __m256i
*/
static inline __m256i vec_eq( __m256i a, __m256i b ) {
return _mm256_cmpeq_epi32( a, b );
}
/**
* @brief Compares 2 vector values (by element) for inequality (!=)
*
* @param a
* @param b
* @return __m256i
*/
static inline __m256i vec_ne( __m256i a, __m256i b ) {
return ~ _mm256_cmpeq_epi32( a, b );
}
/**
* @brief Compares 2 vector values (by element) for "greater-than" (>)
*
* @param a
* @param b
* @return __m256i
*/
static inline __m256i vec_gt( __m256i a, __m256i b ) {
return _mm256_cmpgt_epi32( a, b );
}
/**
* @brief Compares 2 vector values (by element) for "less-than" (<)
*
* @param a
* @param b
* @return __m256i
*/
static inline __m256i vec_lt( __m256i a, __m256i b ) {
return _mm256_cmpgt_epi32( b, a );
}
/**
* @brief Bitwise complement (not)
*
* @param a
* @return __m256i
*/
static inline __m256i vec_not( __m256i a ) {
return ~ a;
}
/**
* @brief Bitwise or
*
* @param a
* @param b
* @return __m256i
*/
static inline __m256i vec_or( __m256i a, __m256i b ) {
return _mm256_or_si256( a, b );
}
/**
* @brief Bitwise and
*
* @param a
* @param b
* @return __m256i
*/
static inline __m256i vec_and( __m256i a, __m256i b ) {
return _mm256_and_si256( a, b );
}
/**
* @brief Absolute value
*
* @param a
* @return __m256i
*/
static inline __m256i vec_abs( __m256i a ) {
return _mm256_abs_epi32( a );
}
/**
* @brief Selects between vector elements of vectors a and b according to the mask
*
* @param a a vector
* @param b b vector
* @param mask selection mask, 0 selects a vector element, -1 selects b vector element
* @return __m256i
*/
static inline __m256i vec_select( const __m256i a, const __m256i b, const __m256i mask ) {
return _mm256_blendv_epi8( a, b, mask );
}
/**
* @brief Returns true (1) if all of the mask values are 1
*
* @param mask
* @return int
*/
static inline int vec_all( const __m256i mask ) {
return _mm256_testc_si256( mask, _mm256_cmpeq_epi32( mask, mask ) );
}
/**
* @brief Returns true (1) if any of the mask values is 1
*
* @param mask
* @return int
*/
static inline int vec_any( const __m256i mask ) {
return ! _mm256_testz_si256( mask, mask );
}
static inline __m256i vec_true() {
// __m256i a; return _mm256_cmpeq_epi32( a, a );
return _mm256_set1_epi32(-1);
}
static inline __m256i vec_false() {
return _mm256_setzero_si256();
}
/**
* @brief Vector version of the float2 type holding 2 (.x, .y) vectors
*
*/
struct alignas(__m256) vfloat2 {
__m256 x, y;
};
/**
* @brief Returs a zero valued vfloat2
*
* @return vfloat2
*/
static inline vfloat2 vfloat2_zero( ) {
vfloat2 v{ _mm256_setzero_ps(), _mm256_setzero_ps() };
return v;
}
/**
* @brief Loads 2-element structure from memory
*
* @note Data is loaded sequentially and de-interleaved into 2 vectors
*
* @param addr
* @return vfloat2
*/
static inline vfloat2 vec_load_s2( const float * addr ) {
__m256 m02, m13;
m02 = _mm256_castps128_ps256(_mm_loadu_ps( & addr[0] ) );
m13 = _mm256_castps128_ps256(_mm_loadu_ps( & addr[4] ) );
m02 = _mm256_insertf128_ps(m02 ,_mm_loadu_ps(&addr[8]),1);
m13 = _mm256_insertf128_ps(m13 ,_mm_loadu_ps(&addr[12]),1);
vfloat2 v {
_mm256_shuffle_ps( m02, m13, _MM_SHUFFLE( 2, 0, 2, 0 ) ),
_mm256_shuffle_ps( m02, m13, _MM_SHUFFLE( 3, 1, 3, 1 ) )
};
return v;
}
/**
* @brief Stores 2-element structure to memory
*
* @note Data is interleaved from 2 vectors and stored sequentially
*
* @param addr
* @param v
*/
static inline void vec_store_s2( float * addr, const vfloat2 v ) {
__m256 r02, r13;
r02 = _mm256_unpacklo_ps( v.x, v.y );
r13 = _mm256_unpackhi_ps( v.x, v.y );
_mm_storeu_ps( &addr[ 0], _mm256_castps256_ps128( r02 ) );
_mm_storeu_ps( &addr[ 4], _mm256_castps256_ps128( r13 ) );
_mm_storeu_ps( &addr[ 8], _mm256_extractf128_ps( r02 ,1 ) );
_mm_storeu_ps( &addr[12], _mm256_extractf128_ps( r13 ,1 ) );
}
/**
* @brief Vector version of the float3 type holding 3 (.x, .y, .z) vectors
*
*/
struct alignas(__m256) vfloat3 {
__m256 x, y, z;
};
/**
* @brief Returs a zero valued vfloat3
*
* @return vfloat3
*/
static inline vfloat3 vfloat3_zero( ) {
vfloat3 v{ _mm256_setzero_ps(), _mm256_setzero_ps(), _mm256_setzero_ps() };
return v;
}
/**
* @brief Loads 3-element structure from memory
*
* @note Data is loaded sequentially and de-interleaved into 3 vectors
*
* @param addr
* @return vfloat3
*/
static inline vfloat3 vec_load_s3( const float * addr ) {
__m256 m03, m14, m25;
m03 = _mm256_castps128_ps256( _mm_loadu_ps( & addr[ 0] ) );
m14 = _mm256_castps128_ps256( _mm_loadu_ps( & addr[ 4] ) );
m25 = _mm256_castps128_ps256( _mm_loadu_ps( & addr[ 8] ) );
m03 = _mm256_insertf128_ps(m03 ,_mm_loadu_ps( & addr[12] ) , 1 );
m14 = _mm256_insertf128_ps(m14 ,_mm_loadu_ps( & addr[16] ) , 1 );
m25 = _mm256_insertf128_ps(m25 ,_mm_loadu_ps( & addr[20] ) , 1 );
__m256 xy = _mm256_shuffle_ps(m14, m25, _MM_SHUFFLE(2,1,3,2));
__m256 yz = _mm256_shuffle_ps(m03, m14, _MM_SHUFFLE(1,0,2,1));
vfloat3 v {
_mm256_shuffle_ps(m03, xy , _MM_SHUFFLE(2,0,3,0)),
_mm256_shuffle_ps(yz , xy , _MM_SHUFFLE(3,1,2,0)),
_mm256_shuffle_ps(yz , m25, _MM_SHUFFLE(3,0,3,1))
};
return v;
}
/**
* @brief Stores 3-element structure to memory
*
* @note Data is interleaved from 3 vectors and stored sequentially
*
* @param addr
* @param v
*/
static inline void vec_store_s3( float * addr, const vfloat3 v ) {
__m256 rxy = _mm256_shuffle_ps(v.x,v.y, _MM_SHUFFLE(2,0,2,0));
__m256 ryz = _mm256_shuffle_ps(v.y,v.z, _MM_SHUFFLE(3,1,3,1));
__m256 rzx = _mm256_shuffle_ps(v.z,v.x, _MM_SHUFFLE(3,1,2,0));
__m256 r03 = _mm256_shuffle_ps(rxy, rzx, _MM_SHUFFLE(2,0,2,0));
__m256 r14 = _mm256_shuffle_ps(ryz, rxy, _MM_SHUFFLE(3,1,2,0));
__m256 r25 = _mm256_shuffle_ps(rzx, ryz, _MM_SHUFFLE(3,1,3,1));
_mm_storeu_ps( & addr [ 0], _mm256_castps256_ps128( r03 ) );
_mm_storeu_ps( & addr [ 4], _mm256_castps256_ps128( r14 ) );
_mm_storeu_ps( & addr [ 8], _mm256_castps256_ps128( r25 ) );
_mm_storeu_ps( & addr [12], _mm256_extractf128_ps( r03, 1 ) );
_mm_storeu_ps( & addr [16], _mm256_extractf128_ps( r14, 1 ) );
_mm_storeu_ps( & addr [20], _mm256_extractf128_ps( r25, 1 ) );
}
/**
* @brief Vector version of the int2 type holding 2 (.x, .y) vectors
*
*/
struct alignas(__m256i) vint2 {
__m256i x, y;
};
/**
* @brief Loads 2-element structure from memory
*
* @note Data is loaded sequentially and de-interleaved into 2 vectors
*
* @param addr
* @return vint2
*/
static inline vint2 vec_load_s2( int * addr ) {
// AVX has no shuffle operation with 2 integer vectors so we treat data as floats
//
__m256 m02, m13;
m02 = _mm256_castps128_ps256(_mm_loadu_ps( (float *) & addr[ 0] ) );
m13 = _mm256_castps128_ps256(_mm_loadu_ps( (float *) & addr[ 4] ) );
m02 = _mm256_insertf128_ps(m02 ,_mm_loadu_ps((float *) & addr[ 8] ),1 );
m13 = _mm256_insertf128_ps(m13 ,_mm_loadu_ps((float *) & addr[12] ),1 );
return vint2 {
_mm256_castps_si256( _mm256_shuffle_ps( m02, m13, _MM_SHUFFLE( 2, 0, 2, 0 ) ) ),
_mm256_castps_si256( _mm256_shuffle_ps( m02, m13, _MM_SHUFFLE( 3, 1, 3, 1 ) ) )
};
}
/**
* @brief Stores 2-element structure to memory
*
* @note Data is interleaved from 2 vectors and stored sequentially
*
* @param addr
* @param v
*/
static inline void vec_store_s2( int * addr, const vint2 v ) {
__m256i r02, r13;
r02 = _mm256_unpacklo_epi32( v.x, v.y );
r13 = _mm256_unpackhi_epi32( v.x, v.y );
_mm_storeu_si128((__m128i *) & addr[ 0], _mm256_castsi256_si128( r02 ) );
_mm_storeu_si128((__m128i *) & addr[ 4], _mm256_castsi256_si128( r13 ) );
_mm_storeu_si128((__m128i *) & addr[ 8], _mm256_extracti128_si256( r02 ,1 ) );
_mm_storeu_si128((__m128i *) & addr[12], _mm256_extracti128_si256( r13 ,1 ) );
}
static inline vint2 vint2_zero( ) {
vint2 v{ _mm256_setzero_si256(), _mm256_setzero_si256() };
return v;
}
/**
* @brief Vector version of the __mmask16 type holding 2 (.x, .y) masks
*
*/
struct alignas(__m256i) vmask2 {
__m256i x, y;
};
class Vec8Float {
union {
__m256 v;
float s[8];
} data;
public:
Vec8Float( const __m256 v ) { data.v = v; }
Vec8Float( const float s ) { data.v = _mm256_set1_ps(s); }
float extract( const int i ) { return data.s[ i ]; }
friend std::ostream& operator<<(std::ostream& os, const Vec8Float& obj) {
os << obj.data.v;
return os;
}
};
class Vec8Int {