-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlaser.cpp
446 lines (349 loc) · 13.7 KB
/
laser.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
#include "laser.h"
#include <iostream>
#include <cassert>
#include "filter.h"
/**
* @brief Sets the longitudinal field components of E and B to ensure 0 divergence
*
* The algorithm assumes 0 field at the right boundary of the box
*
* This version only allows parallelism on the outermost (ty) loop
*
* @param E E field
* @param B B field
* @param dx cell size
*/
void div_corr_x( vec3grid<float3>& E, vec3grid<float3>& B, const float2 dx ) {
const int2 ntiles = make_int2( E.get_ntiles().x, E.get_ntiles().y );
const auto tile_vol = E.tile_vol;
const auto nx = E.nx;
const auto offset = E.offset;
const int ystride = E.ext_nx.x; // Make sure ystride is signed because iy may be < 0
const double dx_dy = ((double) dx.x) / ((double) dx.y);
for( int ty = 0; ty < ntiles.y; ty ++ ) {
// If paralelizing over y tiles these should be defined by Y tile group (tiles with same tile.y)
double divEx[ nx.y ];
double divBx[ nx.y ];
for( unsigned iy = 0; iy < nx.y; iy++ ) {
divEx[ iy ] = divBx[ iy ] = 0;
}
// Process tiles right to left
for( int tx = ntiles.x-1; tx >=0; tx -- ) {
const auto tile_idx = make_uint2( tx, ty );
const auto tid = tile_idx.y * ntiles.x + tile_idx.x;
const auto tile_off = tid * tile_vol;
// Copy data to shared memory and block
float3 * const __restrict__ tile_E = & E.d_buffer[ tile_off + offset ];
float3 * const __restrict__ tile_B = & B.d_buffer[ tile_off + offset ];
for( unsigned iy = 0; iy < nx.y; iy++ ) {
double tmpDivEx = divEx[ iy ];
double tmpDivBx = divBx[ iy ];
for( int ix = nx.x - 1; ix >= 0; ix-- ) {
tmpDivEx += dx_dy * (tile_E[ix+1 + iy*ystride].y - tile_E[ix+1 + (iy-1)*ystride].y);
tile_E[ ix + iy * ystride].x = tmpDivEx;
tmpDivBx += dx_dy * (tile_B[ix + (iy+1)*ystride].y - tile_B[ix + iy*ystride].y);
tile_B[ ix + iy * ystride ].x = tmpDivBx;
}
divEx[iy] = tmpDivEx;
divBx[iy] = tmpDivBx;
}
}
}
}
/**
* @brief Sets the longitudinal field components of E and B to ensure 0 divergence
*
* The algorithm assumes 0 field at the right boundary of the box
*
* This version allows for more parallelism, similar to GPU versions
*
* @param E E field
* @param B B field
* @param dx cell size
*/
void div_corr_x_mk1( vec3grid<float3>& E, vec3grid<float3>& B, const float2 dx ) {
const auto ntiles = E.get_ntiles();
const auto tile_vol = E.tile_vol;
const int2 nx = make_int2(E.nx.x, E.nx.y);
const auto offset = E.offset;
const int ystride = E.ext_nx.x;
const double dx_dy = ((double) dx.x) / ((double) dx.y);
size_t bsize = ntiles.x * (ntiles.y * nx.y);
double tmpE[ bsize ];
double tmpB[ bsize ];
// Get divergence inside each tile
for( unsigned ty = 0; ty < ntiles.y; ty ++ ) {
for( unsigned tx = 0; tx < ntiles.x; tx ++ ) {
const auto tile_idx = make_uint2( tx, ty );
const auto tid = tile_idx.y * ntiles.x + tile_idx.x;
const auto tile_off = tid * tile_vol;
// Copy data to shared memory and block
float3 * const __restrict__ tile_E = & E.d_buffer[ tile_off + offset ];
float3 * const __restrict__ tile_B = & B.d_buffer[ tile_off + offset ];
for( int iy = 0; iy < nx.y; iy++ ) {
// Find divergence at left edge
double divEx = 0;
double divBx = 0;
for( int ix = nx.x - 1; ix >= 0; ix-- ) {
divEx += dx_dy * (tile_E[ix+1 + iy*ystride].y - tile_E[ix+1 + (iy-1)*ystride].y);
divBx += dx_dy * (tile_B[ix + (iy+1)*ystride].y - tile_B[ix + iy*ystride].y);
}
const int idx = (tile_idx.y * nx.y + iy) * ntiles.x + tile_idx.x;
tmpE[ idx ] = divEx;
tmpB[ idx ] = divBx;
}
}
}
// Do a left scan to find accumulated divergence
for( unsigned ty = 0; ty < ntiles.y; ty ++ ) {
for( int iy = 0; iy < nx.y; iy++ ) {
double divEx = 0;
double divBx = 0;
for( int tx = ntiles.x-1; tx >= 0; tx -- ) {
auto tile_idx = make_uint2( tx, ty );
const int idx = (tile_idx.y * nx.y + iy) * ntiles.x + tile_idx.x;
auto tE = tmpE[ idx ] + divEx;
auto tB = tmpB[ idx ] + divBx;
tmpE[ idx ] = divEx;
tmpB[ idx ] = divBx;
divEx = tE;
divBx = tB;
}
}
}
// Correct divergence
for( unsigned ty = 0; ty < ntiles.y; ty ++ ) {
for( unsigned tx = 0; tx < ntiles.x; tx ++ ) {
const auto tile_idx = make_uint2( tx, ty );
const auto tid = tile_idx.y * ntiles.x + tile_idx.x;
const auto tile_off = tid * tile_vol;
// Copy data to shared memory and block
float3 * const __restrict__ tile_E = & E.d_buffer[ tile_off + offset ];
float3 * const __restrict__ tile_B = & B.d_buffer[ tile_off + offset ];
for( int iy = 0; iy < nx.y; iy++ ) {
auto idx = (tile_idx.y * nx.y + iy) * ntiles.x + tile_idx.x;
auto divEx = tmpE[ idx ];
auto divBx = tmpB[ idx ];
for( int ix = nx.x - 1; ix >= 0; ix-- ) {
divEx += dx_dy * (tile_E[ix+1 + iy*ystride].y - tile_E[ix+1 + (iy-1)*ystride].y);
tile_E[ ix + iy * ystride].x = divEx;
divBx += dx_dy * (tile_B[ix + (iy+1)*ystride].y - tile_B[ix + iy*ystride].y);
tile_B[ ix + iy * ystride ].x = divBx;
}
}
}
}
}
/**
* @brief Validates laser parameters
*
* @return 0 on success, -1 on error
*/
int Laser::Pulse::validate() {
if ( a0 <= 0 ) {
std::cerr << "(*error*) Invalid laser a0, must be > 0\n";
return -1;
}
if ( omega0 <= 0 ) {
std::cerr << "(*error*) Invalid laser OMEGA0, must be > 0\n";
return -1;
}
if ( fwhm > 0 ) {
// The fwhm parameter overrides the rise/flat/fall parameters
rise = fwhm;
fall = fwhm;
flat = 0.;
} else {
if ( rise <= 0 ) {
std::cerr << "(*error*) Invalid laser RISE, must be > 0\n";
return (-1);
}
if ( flat < 0 ) {
std::cerr << "(*error*) Invalid laser FLAT, must be >= 0\n";
return (-1);
}
if ( fall <= 0 ) {
std::cerr << "(*error*) Invalid laser FALL, must be > 0\n";
return (-1);
}
}
return 0;
}
/**
* @brief Launches a plane wave
*
* The E and B tiled grids have the complete laser field.
*
* @param E Electric field
* @param B Magnetic field
* @param box Box size
* @return Returns 0 on success, -1 on error (invalid laser parameters)
*/
int Laser::PlaneWave::launch( vec3grid<float3>& E, vec3grid<float3>& B, float2 box ) {
// std::cout << "Launching plane wave...\n";
if ( validate() < 0 ) return -1;
if (( cos_pol == 0 ) && ( sin_pol == 0 )) {
cos_pol = std::cos( polarization );
sin_pol = std::sin( polarization );
}
uint2 g_nx = E.gnx;
float2 dx = make_float2(
box.x / g_nx.x,
box.y / g_nx.y
);
// Grid tile parameters
const auto ntiles = E.get_ntiles();
const auto tile_vol = E.tile_vol;
const auto nx = E.nx;
const auto offset = E.offset;
const int ystride = E.ext_nx.x; // ystride should be signed
const auto tile_start = E.get_tile_start();
const float k = omega0;
const float amp = omega0 * a0;
// Loop over tiles
for( unsigned ty = 0; ty < ntiles.y; ty ++ ) {
for( unsigned tx = 0; tx < ntiles.x; tx ++ ) {
const auto tile_idx = make_uint2( tx, ty );
const auto tid = tile_idx.y * ntiles.x + tile_idx.x;
const auto tile_off = tid * tile_vol;
// Copy data to shared memory and block
float3 * const __restrict__ tile_E = & E.d_buffer[ tile_off + offset ];
float3 * const __restrict__ tile_B = & B.d_buffer[ tile_off + offset ];
const int ix0 = ( tile_start.x + tile_idx.x ) * nx.x;
for( unsigned iy = 0; iy < nx.y; iy++ ) {
for( unsigned ix = 0; ix < nx.x; ix++ ) {
const float z = ( ix0 + ix ) * dx.x;
const float z_2 = ( ix0 + ix + 0.5 ) * dx.x;
float lenv = amp * lon_env( z );
float lenv_2 = amp * lon_env( z_2 );
tile_E[ ix + iy * ystride ] = make_float3(
0,
+lenv * std::cos( k * z ) * cos_pol,
+lenv * std::cos( k * z ) * sin_pol
);
tile_B[ ix + iy * ystride ] = make_float3(
0,
-lenv_2 * std::cos( k * z_2 ) * sin_pol,
+lenv_2 * std::cos( k * z_2 ) * cos_pol
);
}
}
}
}
E.copy_to_gc();
B.copy_to_gc();
if ( filter > 0 ) {
Filter::Compensated fcomp( coord::x, filter);
fcomp.apply(E);
fcomp.apply(B);
}
// std::cout << "Plane wave launched\n";
return 0;
}
/**
* @brief Validate Gaussian laser parameters
*
* @return 0 on success, -1 on error
*/
int Laser::Gaussian::validate() {
if ( Laser::Pulse::validate() < 0 ) {
return -1;
}
if ( W0 <= 0 ) {
std::cerr << "(*error*) Invalid laser W0, must be > 0\n";
return (-1);
}
return 0;
}
/**
* @brief Returns local phase for a gaussian beamn
*
* @param omega0 Beam frequency
* @param W0 Beam waist
* @param z Position along focal line (focal plane at z = 0)
* @param r Position transverse to focal line (focal line at r = 0)
* @return Local field value
*/
inline float gauss_phase( const float omega0, const float W0, const float z, const float r ) {
const float z0 = omega0 * ( W0 * W0 ) / 2;
const float rho2 = r*r;
const float curv = rho2 * z / (z0*z0 + z*z);
const float rWl2 = (z0*z0)/(z0*z0 + z*z);
const float gouy_shift = atan2( z, z0 );
return std::sqrt( std::sqrt(rWl2) ) *
std::exp( - rho2 * rWl2/( W0 * W0 ) ) *
std::cos( omega0*( z + curv ) - gouy_shift );
}
/**
* @brief Launches a Gaussian pulse
*
* The E and B tiled grids have the complete laser field.
*
* @param E Electric field
* @param B Magnetic field
* @param dx Cell size
* @return Returns 0 on success, -1 on error (invalid laser parameters)
*/
int Laser::Gaussian::launch(vec3grid<float3>& E, vec3grid<float3>& B, float2 const box ) {
// std::cout << "Launching gaussian pulse...\n";
if ( validate() < 0 ) return -1;
if (( cos_pol == 0 ) && ( sin_pol == 0 )) {
cos_pol = std::cos( polarization );
sin_pol = std::sin( polarization );
}
uint2 g_nx = E.gnx;
float2 dx = make_float2(
box.x / g_nx.x,
box.y / g_nx.y
);
// Grid tile parameters
const auto ntiles = E.get_ntiles();
const auto tile_vol = E.tile_vol;
const auto nx = E.nx;
const auto offset = E.offset;
const int ystride = E.ext_nx.x; // ystride must be signed
const float amp = omega0 * a0;
// Loop over tiles
for( unsigned ty = 0; ty < ntiles.y; ty ++ ) {
for( unsigned tx = 0; tx < ntiles.x; tx ++ ) {
const auto tile_idx = make_uint2( tx, ty );
const auto tid = tile_idx.y * ntiles.x + tile_idx.x;
const auto tile_off = tid * tile_vol;
// Copy data to shared memory and block
float3 * const __restrict__ tile_E = & E.d_buffer[ tile_off + offset ];
float3 * const __restrict__ tile_B = & B.d_buffer[ tile_off + offset ];
const int ix0 = tile_idx.x * nx.x;
const int iy0 = tile_idx.y * nx.y;
for( unsigned iy = 0; iy < nx.y; iy++ ) {
for( unsigned ix = 0; ix < nx.x; ix++ ) {
const float z = ( ix0 + ix ) * dx.x;
const float z_2 = ( ix0 + ix + 0.5 ) * dx.x;
const float r = (iy0 + iy ) * dx.y - axis;
const float r_2 = (iy0 + iy + 0.5 ) * dx.y - axis;
const float lenv = amp * lon_env( z );
const float lenv_2 = amp * lon_env( z_2 );
tile_E[ ix + iy * ystride ] = make_float3(
0,
+lenv * gauss_phase( omega0, W0, z - focus, r_2 ) * cos_pol,
+lenv * gauss_phase( omega0, W0, z - focus, r ) * sin_pol
);
tile_B[ ix + iy * ystride ] = make_float3(
0,
-lenv_2 * gauss_phase( omega0, W0, z_2 - focus, r ) * sin_pol,
+lenv_2 * gauss_phase( omega0, W0, z_2 - focus, r_2 ) * cos_pol
);
}
}
}
}
E.copy_to_gc();
B.copy_to_gc();
if ( filter > 0 ) {
Filter::Compensated fcomp( coord::x, filter);
fcomp.apply(E);
fcomp.apply(B);
}
div_corr_x( E, B, dx );
// std::cout << "Gaussian pulse launched\n";
return 0;
}