-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathlec03.tex
1528 lines (1342 loc) · 48 KB
/
lec03.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[table,10pt]{beamer}
\mode<presentation>{
%\usetheme{Goettingen}
\usetheme{Boadilla}
\usecolortheme{default}
}
\usepackage{CJK}
\usepackage{graphicx}
\usepackage{amsmath, amsopn}
\usepackage{xcolor}
\usepackage[english]{babel}
\usepackage[T1]{fontenc}
\usepackage[latin1]{inputenc}
\usepackage{enumerate}
\usepackage{multirow}
\usepackage{url}
\ifx\hypersetup\undefined
\AtbBeginDocument{%
\hypersetup{unicode=true,pdfusetitle,
bookmarks=true,bookmarksnumbered=false,bookmarksopen=false,
breaklinks=false,pdfborder={0 0 0},pdfborderstyle={},backref=false,colorlinks=false}
}
\else
\hypersetup{unicode=true,pdfusetitle,
bookmarks=true,bookmarksnumbered=false,bookmarksopen=false,
breaklinks=false,pdfborder={0 0 0},pdfborderstyle={},backref=false,colorlinks=false}
\fi
\usepackage{breakurl}
\usepackage{color}
\usepackage{times}
\usepackage{xcolor}
\usepackage{listings}
\lstset{
language=R,
keywordstyle=\color{blue!70}\bfseries,
basicstyle=\ttfamily,
commentstyle=\ttfamily,
showspaces=false,
showtabs=false,
frame=shadowbox,
rulesepcolor=\color{red!20!green!20!blue!20},
breaklines=true}
\makeatletter
\newcommand{\rmnum}[1]{\romannumeral #1}
\newcommand{\Rmnum}[1]{\expandafter\@slowromancap\romannumeral #1@}
\makeatother
\setlength{\parskip}{.5em}
\renewcommand\arraystretch{1.3}
\title[BI476]{BI476: Biostatistics - Case Studies}
\subtitle[trial]{Lec03: Designing Clinical Trials (临床试验设计)}
\author[Maoying Wu]{Maoying,Wu\\{\small [email protected]}}
\institute[CBB] % (optional, but mostly needed)
{
\inst{}
Dept. of Bioinformatics \& Biostatistics\\
Shanghai Jiao Tong University
}
\date{Spring, 2018}
\AtBeginSection[]
{
\begin{frame}<beamer>{Next Section ...}
\tableofcontents[currentsection]
\end{frame}
}
\begin{document}
\begin{CJK*}{UTF8}{gbsn}
\frame{\titlepage}
\begin{frame}
\frametitle{Outline}
\tableofcontents
\end{frame}
\section{Clinical Trials: Introduction}
\begin{frame}[t]
\frametitle{Pharmaceutical Drug Design: 3 Phases}
\framesubtitle{Phase I trials: Clinical pharmacology and toxicity study}
\begin{table}
\begin{tabular}{p{0.3\textwidth}p{0.6\textwidth}}
\textbf{Objective:} & The main objective is safety, by providing information on the
\textbf{pharmacokinetics} and \textbf{pharmacodynamics}\\
\textbf{Design} & Usually single or multiple dose-escalation studies.\\
\textbf{Subjects} & Normal healthy subjects. Patients may be used, particularly with
anti-oncology drugs. The objective in oncology studies is to determine the
dose to be used in phase \Rmnum{2} studies (the maximum tolerated dose, MTD)\\
\textbf{Sample size} & Approximately 20 to 80 subjects.
\end{tabular}
\uncover<2->{\begin{description}
\item[Pharmacokinetics (药代)]{Process by which a drug is absored, distributed, metabolized, and eliminated by the body.}
\item[Pharmacodynamics (药效)]{Study of action or effects of drugs on living organisms or living systems.}
\end{description}}
\end{table}
\end{frame}
\begin{frame}[t]
\frametitle{Pharmaceutical Drug Design: 3 Phases}
\framesubtitle{Phase II trials: Initial clinical investigation on treatment effect}
\begin{table}
\footnotesize
\begin{tabular}{p{0.25\textwidth}p{0.70\textwidth}}
\textbf{Objective:} & To evaluate the potential effectiveness of a drug based on clinical endpoints for a particular indication or indications, the common short-term side effects, and the risks associated with the drug. Providing data on the doses to be used for \Rmnum{3} trials.\\
\textbf{Design: } & Often single-arm, to be compared with historical controls or current treatment:
\begin{itemize}
\item Randomized dose ranging design
\item Randomized titration design
\item Two-stage phase \Rmnum{2} design (oncology)
\item Multistage design
\item Bayesian design
\item Randomized phase \Rmnum{2}
\item Multiple-endpoint design
\end{itemize}\\
\textbf{Subjects:} & Patients with disease.\\
\textbf{Sample size: } & Often $<100$ patients.
\end{tabular}
\end{table}
\end{frame}
\begin{frame}[t]
\frametitle{Pharmaceutical Drug Design: 3 Phases}
\framesubtitle{Phase III trials: Full-scale evaluation of the effects}
\begin{table}
\begin{tabular}{p{0.25\textwidth}p{0.70\textwidth}}
\textbf{Objective:} & To compare the efficacy of the new treatment with the standard regimen in a scientifically rigorous manner.\\
\textbf{Design: } & Randomized trial of the new treatment \emph{versus} the control regimen.\\
\textbf{Subjects:} & Patients with disease.\\
\textbf{Sample size: } & Often $100$ to $1000+$ patients.
\end{tabular}
\end{table}
We will focus on the phase \Rmnum{3} study in the following slides.
\end{frame}
\begin{frame}[t]
\frametitle{Phase III Clinical Trials}
\framesubtitle{Randomized controlled trials}
\begin{itemize}
\item Gold-standard clinical design:
\begin{itemize}
\item \textbf{New} intervention compared with a \textbf{control}
\item Treatment assignment made randomly.
\end{itemize}
\item Randomization:
\begin{itemize}
\item Remove \textbf{bias} in subject allocation to treatments.
\item Tends to produce comparable group (w.r.t. confounders)
\item Allows valid statistical tests to be performed.
\end{itemize}
\end{itemize}
Randomized clinical trials (RCTs) are the standard to which other designs are compared.
\end{frame}
\begin{frame}[t]
\frametitle{Clinical Trials: Notations and Priciples}
A clinical trial is a \alert{propspective study} comparing the \alert{efficacy and safety}
of an \alert{intervention (干预)} against a \alert{control (对照)} in human subjects.
\uncover<2->{\begin{alertblock}{\center 3 Principles}
\begin{itemize}
\item Randomization (随机)
\item Controlled (对照)
\item Replication/Sample size (重复/样本量)
\end{itemize}
\end{alertblock}}
\uncover<3->{The control can be
\begin{itemize}
\item<4-> external/historical control (外部/历史对照)
\item<5-> no-treatment control (空白对照)
\item<6-> placebo control (安慰剂对照)
\item<7-> active/positive control (阳性对照)
\item<8-> dose-response control (剂量-响应对照)
\item<9-> hybrid control (组合对照)
\end{itemize}}
\end{frame}
\begin{frame}[t]
\frametitle{A Randomized Clinical Trial: Example}
{\large \alert{Effect of Nitroglycerin Ointment on Bone Density
and Strength in Postmenopausal Women}}\\
\small{Sophie A. Jamal, et al. JAMA 2011; 305(8):800-807}
\begin{description}
\item[Objective]To determine if nitroglycerin increases
lumbar spine bone mineral density (BMD)
\item[Design]\underline{\bf Single-center}, \underline{\bf double-blind}, \underline{\bf placebo-controlled}
\underline{\bf randomized} trial.
\item[Intervention]Nitroglycerin ointment (15 mg/d) or placebo
applied at bedtime for 24 months.
\item[Primary outome]Areal BMD at the lumbar spine, femoral neck,
and total hip.
\item[Results]blahblah
\item[Conclusion]Among postmenopausal women, nitroglycerin ointment
modestly increased BMD and decreased bone reabsorption.
\end{description}
\end{frame}
\begin{frame}[t]
\frametitle{A Randomized Clinical Trial: Example}
\framesubtitle{Participant flow diagram}
\begin{figure}
\includegraphics[width=0.5\textwidth]{images/nitroglycerin_bmd_trial_flowchart.png}
\end{figure}
\end{frame}
\begin{frame}[t]
\frametitle{Nitroglycerin and BMD: Baseline characteristics}
\begin{table}
\footnotesize
\caption{Baseline characteristics of study participants}
\begin{tabular}{lcc}
\hline
Characteristics & Nitroglycerin (n=126) & Placebo (n=117)\\
\hline
Age (y) & 61.3 (6.6) & 61.9 (7.3)\\
\hline
Weight (kg) & 70.3 (11.9) & 70.9 (13.3)\\
\hline
White race (\%) & 118 (94) & 107 (91)\\
\hline
Years since menopause & 11.8 (8.2) & 11.8 (8.3)\\
\hline
Walks $\ge 2h$ per wk (\%) & 104 (89) & 109 (87)\\
\hline
Nonsmoker (\%) & 124 (98) & 113 (97)\\
\hline
Vitamine D intake (IU/d) & 783.2 (251.2) & 753.2 (237.2)\\
\hline
Cacium intake (mg/d) & 1548.8 (317.2) & 1565.6 (373.6)\\
\hline
T score (Lumbar spine) & -0.9 (0.6) & -1.1 (0.6)\\
\hline
T score (Femoral neck) & -0.9 (0.6) & -0.8 (0.7)\\
\hline
T score (Total hip) & -0.6 (0.7) & -0.6 (0.7)\\
\hline
\end{tabular}
\end{table}
\end{frame}
\begin{frame}[t]
\frametitle{Results}
\begin{table}
\footnotesize
\caption{Absolute BMDs of different sites at baseline, 12 and 24 months}
\begin{tabular}{lccc}
\hline
& \multicolumn{3}{c}{BMD, Absolute value (95\%CI)}\\
\cline{2-4}
{\bf Site and Group} & {\bf Baseline} & {\bf 12 months} & {\bf 24 months}\\
\hline
Lumbar spine & & & \\
- Placebo & 1.06 (1.05-1.08) & 1.06 (1.05-1.08) & 1.08 (1.08-1.09)\\
- Nitroglycerin & 1.05 (1.04-1.07) & 1.11 (1.10-1.13) & 1.14 (1.12-1.15)\\
\hline
Total hip & & & \\
- Placebo & 0.93 (0.91-0.94) & 0.92 (0.91-0.94) & 0.92 (0.90-0.94)\\
- Nitroglycerin & 0.92 (0.91-0.94) & 0.96 (0.94-0.98) & 0.97 (0.96-0.99)\\
\hline
Femoral neck & & & \\
- Placebo & 0.87 (0.86-0.89) & 0.87 (0.85-0.88) & 0.86 (0.85-0.88)\\
- Nitroglycerin & 0.88 (0.86-0.90) & 0.91 (0.89-0.92) & 0.93 (0.92-0.95)\\
\hline
\end{tabular}
\end{table}
\end{frame}
\begin{frame}[t]
\frametitle{Sample size requirements}
In order to compute the sample size required for comparing two means, we need
\begin{itemize}
\item $\delta_0 = 0.02$: difference between the nitroglycerin and control group;
\item $\sigma = 0.045$: estimated standard deviation for treatment or control group;
\item $\alpha = 0.05$: Two-tailed type I error;
\item $1-\beta = 0.90$: Power to detect the difference
\end{itemize}
Then, sample size for each group is:
$$
\begin{aligned}
n &=& 2 \times \left( \frac{(z_{1-\frac{\alpha}{2}} + z_{1-\beta})\sigma}{\delta_0}\right)^2\\
&=& 106.4 \approx 107
\end{aligned}
$$
\end{frame}
\begin{frame}[t]
\frametitle{Statistical test for comparing the differences in changes of BMD}
\begin{itemize}
\item $H_0: \mu_1 = \mu_2$;
\item $H_a: \mu_1 \neq \mu_2$;
\item Two side $t$-test with $\alpha = 0.05$;
\item Statistic: $t = \frac{\bar{x}_1 - \bar{x}_2}{S_{\bar{x}_1 - \bar{x}_2}}$
\item $S_{\bar{x}_1 - \bar{x}_2} = \sqrt{S_c^2 \frac{n_1 + n_2}{n_1 n_2}}$
\item $S_c^2 = \frac{(n_1-1)S_1^2 + (n_2 - 1)S_2^2}{(n_1-1)+(n_2-1)}$
\item $t = 8.80 \sim t_{df=n_1+n_2-2}$
\item $p = 2.69 \times 10^{-16}$
\item Reject the null hypothesis.
\item $95\%$ confidence interval of difference: $(\bar{x}_1 - \bar{x}_2) \pm t_{0.975, n_1+n_2-2}
\times S_{\bar{x}_1 - \bar{x}_2}$
\end{itemize}
\end{frame}
\begin{frame}[t]
\frametitle{Key issues and the corresponding solution}
\begin{table}
\footnotesize
\caption{Issues and Solutions}
\begin{tabular}{p{0.3\textwidth}p{0.6\textwidth}}
\hline
\textbf{Issues} & \textbf{Solutions}\\
\hline
Procedure selection bias & \alert{Randomization (随机化)}\\
\hline
Assessment bias & \alert{Masking/blinding (盲法)}\\
\hline
Assessment bias & Objective assessment (客观评价)\\
\hline
Treatment-time confounding & Concurrent controls (同期对照)\\
\hline
Disease remission/progression & Concurrent controls (同期对照)\\
\hline
Variation & \alert{Replication (重复,保证足够样本量)}\\
\hline
\end{tabular}
\end{table}
\end{frame}
\section{Clinical trial designs}
\begin{frame}[t]
\frametitle{Clinical Trials: Various Controls}
\begin{itemize}
\item No control
\item Historical control (single-arm)
\item Concurrent but non-randomized control
\item Randomized
\end{itemize}
\end{frame}
\begin{frame}[t]
\frametitle{Historical control design}
A.k.a \alert{single-arm study (单臂试验)}.
In trials with historical controls, a new treatment is used in a series of subjects; the outcome
is compared with previous series of comparable subjects.
\begin{alertblock}{\center Pros}
\begin{itemize}
\item Rapid, inexpensive, good for initial testing of new treatment
\end{itemize}
\end{alertblock}
\begin{alertblock}{\center Cons: Vulnerable to bias}
Changes in outcome over time may come from:
\begin{itemize}
\item change in underlying patient population
\item change in criteria for selecting patients
\item change in patient care and management peripheral to treatment
\item change in diagnostic or evaluating criteria
\item change in quality of data available
\end{itemize}
Studies with historical controls tend to exaggerate the value of new treatment.
Control groups taken from the literature are a particularly poor choice.
Covariate analysis can be used to adjust for patient selection, but all other
biases will remain.
\end{alertblock}
\end{frame}
\begin{frame}[t]
\frametitle{Concurrent control design (同期对照)}
\begin{itemize}
\item Not randomized
\item Patients compared, treated by different strategies, same period
\end{itemize}
\begin{alertblock}{\center Advantage}
\begin{itemize}
\item Eliminate time trend
\item Data of comparable quality
\end{itemize}
\end{alertblock}
\begin{alertblock}{Disadvantage}
\begin{itemize}
\item Selection Bias
\item Treatment groups not comparable
\item Covariance analysis not adequate
\end{itemize}
\end{alertblock}
\end{frame}
\begin{frame}[t]
\frametitle{Randomization can reduce the selection bias}
\begin{table}
\footnotesize
\caption{Clinical trials on the use of anticoagulant therapy on acute MI (1977)}
\begin{tabular}{p{0.20\textwidth}|p{0.20\textwidth}p{0.20\textwidth}p{0.20\textwidth}}
\hline
& \#studies & \#($p<.05$) & Estimated reduction in total mortality\\
\hline
Non-randomized & & & \\
- Historical controls & 18 & 15 & 50\%\\
- Concurrent controls & 8 & 5 & 50\%\\
\hline
Randomized & 6 & 1 & 20\%\\
\hline
\end{tabular}
\end{table}
\begin{itemize}
\item<2-> The difference in estimated reduction is probably due to biases in
the non-randomized trials.
\item<3-> Selection bias can lead historically controlled studies to inappropriately
favor the new intervention.
\item<4-> However, small sample sizes in randomized trials lead to missing benefits
of new treatments that truly exists.
\end{itemize}
\end{frame}
\begin{frame}[t]
\frametitle{Commonly used Phase-III designs}
\begin{itemize}
\item Parallel (平行)
\item Crossover (交叉)
\item Factorial (因子)
\item Group/Cluster (组)
\item Adaptive (适应性)
\end{itemize}
\end{frame}
\begin{frame}[t]
\frametitle{Parallel design}
\begin{table}
\begin{tabular}{lc}
\hline
\textbf{Patient} & \textbf{Treatment}\\
\hline
1 & A\\
2 & B\\
3 & B\\
4 & A\\
\hline
\end{tabular}
\end{table}
\begin{itemize}
\item In a parallel study design, each subject is randomized to one
and only one treatment.
\item Most large clinical trials adopt this approach.
\item During the trial, participants in one group receive drug A \alert{
in parallel} to participants in the other group receiving drug B
\end{itemize}
\end{frame}
\begin{frame}[t]
\frametitle{Crossover design}
\begin{table}
\begin{tabular}{lcc}
\hline
\textbf{Patient} & \textbf{Period 1} & \textbf{Period 2}\\
\hline
1 & A & B\\
2 & B & A\\
\hline
\end{tabular}
\end{table}
Each patient is randomly assigned to "A, then B" or "B, then A".
\uncover<2->{
\begin{alertblock}{Pros}
\begin{itemize}
\item Each subject serves as own control $\Rightarrow$ variability reduced.
\end{itemize}
\end{alertblock}}
\uncover<3->{\begin{alertblock}{Cons}
\begin{itemize}
\item Condition must be chronic (e.g., HBP, arthritis), either "cure" or "death"
before the second treatment would ruin the design.
\end{itemize}
\end{alertblock}}
\uncover<4->{This design must assume \alert{no carryover (residual) effect} of the first treatment.
The statistical test for carryover has low power. Else you need \alert{wash-out} period to avoid a \alert{carry-over} effect.}
\end{frame}
\begin{frame}[t]
\frametitle{Crossover Trials: Advantage and disadvantages}
\uncover<1->{\begin{alertblock}{\center Advantages}
\begin{itemize}
\item Reducing the variability since the treatment comparison is
only \alert{within-subject} other than between-subject
\item Smaller sample size needed.
\end{itemize}
\end{alertblock}}
\uncover<2->{\begin{alertblock}{\center Disadvantages}
\begin{itemize}
\item Strict assumption about carry-over effects;
\item Only appropriate for chronic diseases;
\item Drop-out may occurred before second period;
\item Period effect.
\end{itemize}
\end{alertblock}}
\end{frame}
\begin{frame}[t]
\frametitle{High-order Crossover Designs}
\begin{itemize}
\item Note that in crossover design, the number of periods does not necessarily have to be
equal to the number of treatments to be compared.
\item Here is an example of $2 \times 3$ crossover design for comparing two treatments with
three periods.
\end{itemize}
\uncover<2->{\begin{table}
\footnotesize
\caption{Two-sequence Dual Crossover Design}
\begin{tabular}{lccc}
\hline
& \textbf{Period 1} & \textbf{Period 2} & \textbf{Period 3}\\
\hline
Sequence 1 & A & B & B\\
Sequence 2 & B & A & A\\
\hline
\end{tabular}
\end{table}}
\uncover<3->{\begin{alertblock}{Types of high-order crossover designs}
\begin{itemize}
\item \alert{Balaam's design}: AA, BB, AB, BA
\item \alert{Two-sequence dual design}: ABB, BAA
\item \alert{Double (replicated) design}: AABB, BBAA
\item \alert{Four-sequence design}: AABB, BBAA, ABBA, BAAB
\item \alert{William's design with three treatments}: ACB, BAC, CBA, BCA, CAB, ABC
\item \alert{William's design with four treatments}: ADBC, BACD, CBDA, DCAB
\end{itemize}
\end{alertblock}}
\end{frame}
\begin{frame}[t]
\frametitle{Factorial design}
Assumed that there are two different treatments: $A$ and $B$
\begin{table}
\begin{tabular}{lcc}
& Treatment $B$ & Control\\
\hline
Treatment $A$ & $A+B$ & $A$\\
\hline
Control & $B$ & Control\\
\hline
\end{tabular}
\end{table}
Randomization of subjects to one of 4 possible regimens.
\uncover<2->{\begin{alertblock}{Pros}
\begin{itemize}
\item Conduct 2 experiments at once!
\item Investigate potential interaction between $A$ and $B$
\end{itemize}
\end{alertblock}}
\uncover<3->{\begin{alertblock}{Cons}
\begin{itemize}
\item If \textbf{interaction exists}, each treatment must be tested separately within
each level of the other ($\Rightarrow$ reduced power).
\end{itemize}
\end{alertblock}}
\uncover<4->{But if there are three dffernet treatments?}\\
\uncover<5->{\alert{Balanced $2\times 2 \times 2$ factorial design.}}
\end{frame}
\begin{frame}[t]
\frametitle{Group allocation design}
Groups (clinics, communities) are randomized to treatment or control (e.g.
trials on fluoridated water).
\begin{alertblock}{Pros}
\begin{itemize}
\item Sometimes logistically more feasible.
\item Avoids individual consent problem.
\end{itemize}
\end{alertblock}
\begin{alertblock}{Cons}
\begin{itemize}
\item Many units must participate to overcome unit-to-unit variation.
\item Larger sample size required than simple randomized design.
\end{itemize}
\end{alertblock}
\end{frame}
\begin{frame}[t]
\frametitle{Cluster RCT Example}
\framesubtitle{1. Population settings}
\footnotesize
\textbf{Aim of study}\\
To examine the effectiveness of a school intervention for well-being and
health risk behaviors.
\textbf{Study design}\\
Cluster RCT
\textbf{Source population}\\
Metropolitan Melbourne and rural districts, Australia
\textbf{Study year}\\
1997
\textbf{Eligible population}\\
Schools in 12 districts in two education regions in Melbourne and schools
in 4 rural districts.
\textbf{Selected population}\\
26 metropolitan government, independent and catholic schools and country
schools.
\textbf{Age}\\
13-14 years (year 8)
\textbf{Female}\\
53.2\%
\textbf{Excluded population}\\
Classrooms in government, independent and catholic metropolitan schools
and country schools.
\end{frame}
\begin{frame}[t]
\frametitle{Cluster RCT Example}
\framesubtitle{2. Intervention allocation method}
\footnotesize
Demographic factors.
\textbf{Intervention/s}\\
Intervention involved institutional and individual-based components based
on an understanding of mental health and risk behaviors that derive from
social environments.
On a whole school level, intervention involved establishing an
"adolescent health team" to identify effective strategies to address risk
issues.
The teaching part of the intervention was derived over 10 weeks in 2
school years (years 8 and 9).
\textbf{Intervention category}\\
School-based
\textbf{Intervention period}\\
10 weeks during 2 years
\textbf{Control/s}\\
No intervention.
\textbf{Sample sizes}:
Total $n = 26$ schools, 2678 students.\\
Intervention $n = 12$\\
Control $n=14$
\textbf{Baseline comparisons}\\
The intervention group reported slightly lower-level of parental smoking
and parental separation.
\end{frame}
\begin{frame}[t]
\frametitle{Cluster RCT Example}
\framesubtitle{3. Outcome and methods of analysis}
\footnotesize
\textbf{Primary outcomes}\\
Smoking Prevalence (any smoking or regular smoker)
\textbf{Secondary outcomes}\\
None
\textbf{Follow-up periods}\\
1,2 and 3 years from baseline.
\textbf{Evaluation}\\
Students completed questionnaires at baseline (beginning of year 8) and
were followed-up at 1 (end of year 8), 2 (end of year 9) and 3 years (end
of year 10). Absent students were surveyed at a later date or telephoned
(along with students who had left the schools).
\textbf{Analysis method}\\
Multivariate analysis. Stated that analysis was intention-to-treat but it
appears that only students that took part in each measurement stage were
included in the analysis.
\end{frame}
\begin{frame}[t]
\frametitle{Cluster RCT Example}
\framesubtitle{4. Results}
\footnotesize
\textbf{Primary outcomes}\\
\begin{table}
\caption{Prevalence of smoking (intervention vs. control)}
\begin{tabular}{lp{0.2\textwidth}p{0.2\textwidth}p{0.2\textwidth}}
\hline
& Year 1 & Year 2 & Year 3\\
\hline
Any smoking & 22.0\% vs. 24.9\% (OR: 0.89 (0.72-1.12)) & 25.0\% vs. 18.7\% (OR: 0.92 (0.63-1.33)) & 24.9\% vs. 28.2\% (OR: 0.91 (0.67-1.24))\\
\hline
Regular smoking & 4.9\% vs. 8.3\% (OR: 0.66 (0.46-0.95)) & 7.7\% vs. 11.9\% (OR: 0.72 (0.47-1.09)) & 11.8\% vs. 15.6\% (OR: 0.79 (0.58-1.07))\\
\hline
\end{tabular}
\end{table}
Reported ORs were adjusted for baseline measurements and gender, family
structure, Australian born and parental structure.
\end{frame}
\begin{frame}[t]
\frametitle{Cluster RCT Example}
\framesubtitle{5. Notes}
\footnotesize
\textbf{Limitations identified by author}\\
The small number of schools in the trial limits the effectiveness of the
randomization process.
\textbf{Limitations identified by review team}\\
Although it is implied taht schools were the units of randomization,
randomization was primarily by district. It is unclear whether this was
taken into account in the analysis.
\textbf{Evidence gaps and/or recommendations for future research}\\
Research to investigate specific mechanisms that affect change.
\end{frame}
\begin{frame}[t]
\frametitle{Hybrid design}
\textbf{Hybrid design} combines historical controls and traditional controls.
These \textbf{criteria} must be met:
\begin{itemize}
\item Same entry criteria and evaluation factors.
\item Participant recruitment by the same clinic or investigator
\item Data from historical control participants must be fairly current
\end{itemize}
\begin{alertblock}{Advantages}
\begin{itemize}
\item Potentially, the need for few participants to be entered into a trial.
\end{itemize}
\end{alertblock}
\begin{alertblock}{Disadvantages}
\begin{itemize}
\item Bias can be introduced from nonrandomized participants (historical controls).
\end{itemize}
\end{alertblock}
\end{frame}
\begin{frame}[t]
\frametitle{Adaptive design}
\textbf{Adaptive trial design} refers to a clinical trial methodology that allows trial design
modifications to be made after patients have been enrolled in a study, without compromising the
scientific method.
In order to maintain the integrity of the trial, these modification should be \alert{clearly
pre-defined} in the protocol. When designed well, an adaptive trial empowers sponsors to respond
to data collected during the trial.
\uncover<2->{\begin{alertblock}{\center Types of adaptive trial designs}
\begin{itemize}
\item Dropping a treatment arm
\item Modifying the sample size
\item Balancing treatment assignment using an adaptive randomization
\item Stopping a study early for success or failure
\end{itemize}
\end{alertblock}}
\end{frame}
\section{Efficacy Assessment}
\begin{frame}[t]
\frametitle{Efficacy of the new treatment compared to a control (有效性评估分类)}
\begin{itemize}
\item The new treatment has superior efficacy to the control (Superiority trial, 优效性试验)
\item The new treatment has efficacy equivalent to that of the active control (Equivalence trial,等效性试验)
\item The new treatment is not much worse than the active control (Non-inferiority trial, 非劣效性试验)
\end{itemize}
\end{frame}
\begin{frame}[t]
\frametitle{Superiority Design (优效性试验设计)}
\textbf{Aim}\\
Show that a new drug is \textbf{better} than control w.r.t. the efficacy variable of interest.
\textbf{Statistical Tests}\\
$H_0$: No difference in effect between the treatment and controls.
\begin{table}
\caption{Superiority trials}
\begin{tabular}{p{0.20\textwidth}p{0.25\textwidth}p{0.25\textwidth}}
\hline
$p$-value & Indication & Conclusion\\
\hline
$p<.001$ & Strong evidence & "is superior"\\
$p=0.02$ & Some evidence & "Seems superior"\\
$p=0.06$ & Weak evidence & "Might be superior"\\
$p=0.3$ & No evidence & "Seems not superior"\\
\hline
\end{tabular}
\end{table}
\end{frame}
\begin{frame}[t]
\frametitle{Equivalence Design (等效性试验设计)}
\textbf{Purpose}\\
To confirm the \alert{absence of a clinically meaningful difference} between
treatments.
\textbf{Hypothesis testing}
Equivalence is inferred when \alert{ENTIRE confidence interval falls exclusively
within equivalence margin: }
$$
(-\delta, +\delta)
$$
\end{frame}
\begin{frame}[t]
\frametitle{Noninferiority Design (非劣效性试验设计)}
A non-inferiority trial aims to demonstrate that the effect of a new treatment
is as good as, or better than, that of the standard one.
This is assessed by demonstrating that the new treatment is \alert{not worse than}
the comparator by more than a specified margin ($\delta_0$).
The new treatment might be tested to establish taht it matches the efficacy of
standard one, and meanwhile has secondary advantages (e.g., in terms of safety,
convenience to the patients, or cost-effectiveness).
Alternatively, it might have potential as a \alert{second-line therapy} to the
standard (in cases when the standard fails or is not tolerated).
\end{frame}
\begin{frame}[t]
\frametitle{Hypothesis formula}
\begin{table}
\footnotesize
\caption{Hypotheses formulation for superiority, non-inferiority, and equivalence trials}
\begin{tabular}{llll}
\hline
Study type & Null hypothesis & Alternative hypothesis & Statistic\\
\hline
Statistical superiority & $H_0: C - T \ge 0$ & $H_a: C - T < 0$ & $Z=\delta/s$\\
Clinical superiority & $H_0: C - T \ge -\delta_0$ & $H_a: C - T < -\delta$ & $Z=(\delta - \delta_0)/s$\\
Non-inferiority & $H_0: C - T \ge \delta_0$ & $H_a: C - T < \delta$ & $Z=(\delta + \delta_0)/s$\\
Equivalence & $H_0: |C - T| \ge \delta_0$ & $H_a: |C - T| < \delta$ & $Z_1 = (\delta+\delta_0)/s, Z_2=(\delta-\delta_0)/s$\\
\hline
\end{tabular}
\end{table}
\begin{itemize}
\item $C$: control or standard treatment;
\item $T$: new treatment;
\item $\delta_0$: clinically admissible margin of non-inferiority/
equivalence/superiority;
\item $\delta$: Observed difference;
\item One-sided test is performed in both superiority and non-inferiority
trials;
\item Two-sided test is performed in equivalence test.
\end{itemize}
\end{frame}
\begin{frame}[t]
\frametitle{Hypothesis testing: Sample size for continuous outcome}
\only<1>{\begin{figure}
\includegraphics[width=0.50\textwidth]{images/three_testings.png}
\end{figure}}
\begin{itemize}
\item<2-> \alert{Non-inferiority design}
$$
N = 2 \times \left( \frac{z_{1-\alpha} + z_{1-\beta}}{\delta_0} \right)^2 \times s^2
$$
\item<3-> \alert{Equivalence design}
$$
N = 2 \times \left( \frac{z_{1-\frac{\alpha}{2}} + z_{1-\beta}}{\delta_0} \right)^2 \times s^2
$$
\item<4-> \alert{Statistical superiority design}
$$
N = 2 \times \left( \frac{z_{1-\frac{\alpha}{2}} + z_{1-\beta}}{\delta} \right)^2 \times s^2
$$
\item<5-> \alert{Clinical superiority design}
$$
N = 2 \times \left( \frac{z_{1-\frac{\alpha}{2}} + z_{1-\beta}}{\delta - \delta_0} \right)^2 \times s^2
$$
\end{itemize}
\end{frame}
\begin{frame}[t]
\frametitle{Hypothesis testing: Sample size for dichotomous outcome}
\only<1>{\begin{figure}
\includegraphics[width=0.50\textwidth]{images/three_testings.png}
\end{figure}}
\begin{itemize}
\item<2-> \alert{Non-inferiority design}
$$
N = 2 \times \left( \frac{z_{1-\alpha} + z_{1-\beta}}{\delta_0} \right)^2 \times p \times (1-p)
$$
\item<3-> \alert{Equivalence design}
$$
N = 2 \times \left( \frac{z_{1-\frac{\alpha}{2}} + z_{1-\beta}}{\delta_0} \right)^2 \times p \times (1-p)
$$
\item<4-> \alert{Statistical superiority design}
$$
N = \frac{1}{2} \times \left( \frac{z_{\frac{\alpha}{2}} + z_{1-\beta}}{\arcsin \sqrt{p} - \arcsin \sqrt{p_0}} \right)^2
$$
\item<5-> \alert{Clinical superiority design}
$$
N = 2 \times \left( \frac{z_{1-\alpha} + z_{1-\beta}}{\delta - \delta_0} \right)^2 \times p \times (1-p)
$$
\end{itemize}
\end{frame}
\begin{frame}[t]
\frametitle{Sample size for dichotomous outcome: Example}
\textbf{Goal}
To test whether there is a difference in the efficacy of mirtazapine (new drug)
and sertraline (standard drug) for the treatment of resistant depression in
6-week treatment duration.
\begin{itemize}
\item $p = 0.40$: the response rate of standard treatment group;
\item $p_0 = 0.58$: the response rate of new drug treatment group;
\item $\delta = p_0 - p = 0.18$: the real difference between the two treatment effects;
\item $\delta_0 = 0.10$: clinically admissible margin;
\item $1-\beta = 0.80$: Power;
\item $1-\alpha = 0.95$: Significance level.
\end{itemize}
\uncover<2->{\begin{alertblock}{\center Sample size calculation}
\begin{itemize}
\item $N_{NI} = 2 \times \left(\frac{z_{0.95} + z_{0.80}}{0.10} \right)^2 \times 0.40 \times 0.60 = 298$
\item $N_{EQ} = 2 \times \left( \frac{z_{0.975} + z_{0.80}}{0.10} \right)^2 \times 0.40 \times 0.60 = 378$
\item $N_{SS} = \frac{1}{2} \times \left( \frac{z_{0.025} + z_{0.80}}{\arcsin \sqrt{0.40} - \arcsin \sqrt{0.58}} \right)^2 = 121$
\item $N_{CS} = 2 \times \left( \frac{z_{0.95} + z_{0.80}}{0.18 - 0.10}\right)^2 \times 0.40 \times 0.60 = 466$
\end{itemize}
\end{alertblock}}
\end{frame}
\section{Randomization techniques}
\begin{frame}[t]
\frametitle{Allocation procedures to achieve balance}
\begin{itemize}[<+->]
\item Simple randomization (简单随机)
\item Biased coin randomization (有偏投币随机)
\item Permuted block randomization (随机排列区块随机)
\item Balanced permuted block randomization (平衡随机排列区块随机)
\item Stratified randomization (分层随机)
\item Minimization method (最小化方法)
\end{itemize}
\end{frame}
\begin{frame}[t]
\frametitle{Simple Randomization}
A specified probability $p$ (usually equal), of patients assigned to
each treatment arm, remains constant or may change but not a function
of covariates or response.
\begin{itemize}[<+->]
\item Fixed-random allocation
\begin{itemize}
\item $n$ known in advance, exactly
\item $n/2$ selected at random and assigned to Trt A, rest to B
\end{itemize}
\item Complete randomization (most common)
\begin{itemize}
\item $n$ not exactly known
\item marginal and conditional prob of assignment = 1/2
\item analogous to a coin-flip/random-digit
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}[t]
\frametitle{Restricted Randomization}