forked from PaddlePaddle/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkie_unet_sdmgr.yml
111 lines (104 loc) · 2.94 KB
/
kie_unet_sdmgr.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
Global:
use_gpu: True
epoch_num: 60
log_smooth_window: 20
print_batch_step: 50
save_model_dir: ./output/kie_5/
save_epoch_step: 50
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: [ 0, 80 ]
# 1. If pretrained_model is saved in static mode, such as classification pretrained model
# from static branch, load_static_weights must be set as True.
# 2. If you want to finetune the pretrained models we provide in the docs,
# you should set load_static_weights as False.
load_static_weights: False
cal_metric_during_train: False
pretrained_model:
checkpoints:
save_inference_dir:
use_visualdl: False
class_path: &class_path ./train_data/wildreceipt/class_list.txt
infer_img: ./train_data/wildreceipt/1.txt
save_res_path: ./output/sdmgr_kie/predicts_kie.txt
img_scale: [ 1024, 512 ]
Architecture:
model_type: kie
algorithm: SDMGR
Transform:
Backbone:
name: Kie_backbone
Head:
name: SDMGRHead
Loss:
name: SDMGRLoss
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
lr:
name: Piecewise
learning_rate: 0.001
decay_epochs: [ 60, 80, 100]
values: [ 0.001, 0.0001, 0.00001]
warmup_epoch: 2
regularizer:
name: 'L2'
factor: 0.00005
PostProcess:
name: None
Metric:
name: KIEMetric
main_indicator: hmean
Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data/wildreceipt/
label_file_list: [ './train_data/wildreceipt/wildreceipt_train.txt' ]
ratio_list: [ 1.0 ]
transforms:
- DecodeImage: # load image
img_mode: RGB
channel_first: False
- NormalizeImage:
scale: 1
mean: [ 123.675, 116.28, 103.53 ]
std: [ 58.395, 57.12, 57.375 ]
order: 'hwc'
- KieLabelEncode: # Class handling label
character_dict_path: ./train_data/wildreceipt/dict.txt
class_path: *class_path
- KieResize:
- ToCHWImage:
- KeepKeys:
keep_keys: [ 'image', 'relations', 'texts', 'points', 'labels', 'tag', 'shape'] # dataloader will return list in this order
loader:
shuffle: True
drop_last: False
batch_size_per_card: 4
num_workers: 4
Eval:
dataset:
name: SimpleDataSet
data_dir: ./train_data/wildreceipt
label_file_list:
- ./train_data/wildreceipt/wildreceipt_test.txt
transforms:
- DecodeImage: # load image
img_mode: RGB
channel_first: False
- KieLabelEncode: # Class handling label
character_dict_path: ./train_data/wildreceipt/dict.txt
- KieResize:
- NormalizeImage:
scale: 1
mean: [ 123.675, 116.28, 103.53 ]
std: [ 58.395, 57.12, 57.375 ]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: [ 'image', 'relations', 'texts', 'points', 'labels', 'tag', 'ori_image', 'ori_boxes', 'shape']
loader:
shuffle: False
drop_last: False
batch_size_per_card: 1 # must be 1
num_workers: 4