forked from PaddlePaddle/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrec_shallow_cnn.py
87 lines (73 loc) · 2.6 KB
/
rec_shallow_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/open-mmlab/mmocr/blob/1.x/mmocr/models/textrecog/backbones/shallow_cnn.py
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import MaxPool2D
from paddle.nn.initializer import KaimingNormal, Uniform, Constant
class ConvBNLayer(nn.Layer):
def __init__(self,
num_channels,
filter_size,
num_filters,
stride,
padding,
num_groups=1):
super(ConvBNLayer, self).__init__()
self.conv = nn.Conv2D(
in_channels=num_channels,
out_channels=num_filters,
kernel_size=filter_size,
stride=stride,
padding=padding,
groups=num_groups,
weight_attr=ParamAttr(initializer=KaimingNormal()),
bias_attr=False)
self.bn = nn.BatchNorm2D(
num_filters,
weight_attr=ParamAttr(initializer=Uniform(0, 1)),
bias_attr=ParamAttr(initializer=Constant(0)))
self.relu = nn.ReLU()
def forward(self, inputs):
y = self.conv(inputs)
y = self.bn(y)
y = self.relu(y)
return y
class ShallowCNN(nn.Layer):
def __init__(self, in_channels=1, hidden_dim=512):
super().__init__()
assert isinstance(in_channels, int)
assert isinstance(hidden_dim, int)
self.conv1 = ConvBNLayer(
in_channels, 3, hidden_dim // 2, stride=1, padding=1)
self.conv2 = ConvBNLayer(
hidden_dim // 2, 3, hidden_dim, stride=1, padding=1)
self.pool = nn.MaxPool2D(kernel_size=2, stride=2, padding=0)
self.out_channels = hidden_dim
def forward(self, x):
x = self.conv1(x)
x = self.pool(x)
x = self.conv2(x)
x = self.pool(x)
return x