forked from PaddlePaddle/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrec_abinet_head.py
297 lines (266 loc) · 10.3 KB
/
rec_abinet_head.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/FangShancheng/ABINet/tree/main/modules
"""
import math
import paddle
from paddle import nn
import paddle.nn.functional as F
from paddle.nn import LayerList
from ppocr.modeling.heads.rec_nrtr_head import TransformerBlock, PositionalEncoding
class BCNLanguage(nn.Layer):
def __init__(self,
d_model=512,
nhead=8,
num_layers=4,
dim_feedforward=2048,
dropout=0.,
max_length=25,
detach=True,
num_classes=37):
super().__init__()
self.d_model = d_model
self.detach = detach
self.max_length = max_length + 1 # additional stop token
self.proj = nn.Linear(num_classes, d_model, bias_attr=False)
self.token_encoder = PositionalEncoding(
dropout=0.1, dim=d_model, max_len=self.max_length)
self.pos_encoder = PositionalEncoding(
dropout=0, dim=d_model, max_len=self.max_length)
self.decoder = nn.LayerList([
TransformerBlock(
d_model=d_model,
nhead=nhead,
dim_feedforward=dim_feedforward,
attention_dropout_rate=dropout,
residual_dropout_rate=dropout,
with_self_attn=False,
with_cross_attn=True) for i in range(num_layers)
])
self.cls = nn.Linear(d_model, num_classes)
def forward(self, tokens, lengths):
"""
Args:
tokens: (B, N, C) where N is length, B is batch size and C is classes number
lengths: (B,)
"""
if self.detach: tokens = tokens.detach()
embed = self.proj(tokens) # (B, N, C)
embed = self.token_encoder(embed) # (B, N, C)
padding_mask = _get_mask(lengths, self.max_length)
zeros = paddle.zeros_like(embed) # (B, N, C)
qeury = self.pos_encoder(zeros)
for decoder_layer in self.decoder:
qeury = decoder_layer(qeury, embed, cross_mask=padding_mask)
output = qeury # (B, N, C)
logits = self.cls(output) # (B, N, C)
return output, logits
def encoder_layer(in_c, out_c, k=3, s=2, p=1):
return nn.Sequential(
nn.Conv2D(in_c, out_c, k, s, p), nn.BatchNorm2D(out_c), nn.ReLU())
def decoder_layer(in_c,
out_c,
k=3,
s=1,
p=1,
mode='nearest',
scale_factor=None,
size=None):
align_corners = False if mode == 'nearest' else True
return nn.Sequential(
nn.Upsample(
size=size,
scale_factor=scale_factor,
mode=mode,
align_corners=align_corners),
nn.Conv2D(in_c, out_c, k, s, p),
nn.BatchNorm2D(out_c),
nn.ReLU())
class PositionAttention(nn.Layer):
def __init__(self,
max_length,
in_channels=512,
num_channels=64,
h=8,
w=32,
mode='nearest',
**kwargs):
super().__init__()
self.max_length = max_length
self.k_encoder = nn.Sequential(
encoder_layer(
in_channels, num_channels, s=(1, 2)),
encoder_layer(
num_channels, num_channels, s=(2, 2)),
encoder_layer(
num_channels, num_channels, s=(2, 2)),
encoder_layer(
num_channels, num_channels, s=(2, 2)))
self.k_decoder = nn.Sequential(
decoder_layer(
num_channels, num_channels, scale_factor=2, mode=mode),
decoder_layer(
num_channels, num_channels, scale_factor=2, mode=mode),
decoder_layer(
num_channels, num_channels, scale_factor=2, mode=mode),
decoder_layer(
num_channels, in_channels, size=(h, w), mode=mode))
self.pos_encoder = PositionalEncoding(
dropout=0, dim=in_channels, max_len=max_length)
self.project = nn.Linear(in_channels, in_channels)
def forward(self, x):
B, C, H, W = x.shape
k, v = x, x
# calculate key vector
features = []
for i in range(0, len(self.k_encoder)):
k = self.k_encoder[i](k)
features.append(k)
for i in range(0, len(self.k_decoder) - 1):
k = self.k_decoder[i](k)
# print(k.shape, features[len(self.k_decoder) - 2 - i].shape)
k = k + features[len(self.k_decoder) - 2 - i]
k = self.k_decoder[-1](k)
# calculate query vector
# TODO q=f(q,k)
zeros = paddle.zeros(
(B, self.max_length, C), dtype=x.dtype) # (T, N, C)
q = self.pos_encoder(zeros) # (B, N, C)
q = self.project(q) # (B, N, C)
# calculate attention
attn_scores = q @k.flatten(2) # (B, N, (H*W))
attn_scores = attn_scores / (C**0.5)
attn_scores = F.softmax(attn_scores, axis=-1)
v = v.flatten(2).transpose([0, 2, 1]) # (B, (H*W), C)
attn_vecs = attn_scores @v # (B, N, C)
return attn_vecs, attn_scores.reshape([0, self.max_length, H, W])
class ABINetHead(nn.Layer):
def __init__(self,
in_channels,
out_channels,
d_model=512,
nhead=8,
num_layers=3,
dim_feedforward=2048,
dropout=0.1,
max_length=25,
use_lang=False,
iter_size=1):
super().__init__()
self.max_length = max_length + 1
self.pos_encoder = PositionalEncoding(
dropout=0.1, dim=d_model, max_len=8 * 32)
self.encoder = nn.LayerList([
TransformerBlock(
d_model=d_model,
nhead=nhead,
dim_feedforward=dim_feedforward,
attention_dropout_rate=dropout,
residual_dropout_rate=dropout,
with_self_attn=True,
with_cross_attn=False) for i in range(num_layers)
])
self.decoder = PositionAttention(
max_length=max_length + 1, # additional stop token
mode='nearest', )
self.out_channels = out_channels
self.cls = nn.Linear(d_model, self.out_channels)
self.use_lang = use_lang
if use_lang:
self.iter_size = iter_size
self.language = BCNLanguage(
d_model=d_model,
nhead=nhead,
num_layers=4,
dim_feedforward=dim_feedforward,
dropout=dropout,
max_length=max_length,
num_classes=self.out_channels)
# alignment
self.w_att_align = nn.Linear(2 * d_model, d_model)
self.cls_align = nn.Linear(d_model, self.out_channels)
def forward(self, x, targets=None):
x = x.transpose([0, 2, 3, 1])
_, H, W, C = x.shape
feature = x.flatten(1, 2)
feature = self.pos_encoder(feature)
for encoder_layer in self.encoder:
feature = encoder_layer(feature)
feature = feature.reshape([0, H, W, C]).transpose([0, 3, 1, 2])
v_feature, attn_scores = self.decoder(
feature) # (B, N, C), (B, C, H, W)
vis_logits = self.cls(v_feature) # (B, N, C)
logits = vis_logits
vis_lengths = _get_length(vis_logits)
if self.use_lang:
align_logits = vis_logits
align_lengths = vis_lengths
all_l_res, all_a_res = [], []
for i in range(self.iter_size):
tokens = F.softmax(align_logits, axis=-1)
lengths = align_lengths
lengths = paddle.clip(
lengths, 2, self.max_length) # TODO:move to langauge model
l_feature, l_logits = self.language(tokens, lengths)
# alignment
all_l_res.append(l_logits)
fuse = paddle.concat((l_feature, v_feature), -1)
f_att = F.sigmoid(self.w_att_align(fuse))
output = f_att * v_feature + (1 - f_att) * l_feature
align_logits = self.cls_align(output) # (B, N, C)
align_lengths = _get_length(align_logits)
all_a_res.append(align_logits)
if self.training:
return {
'align': all_a_res,
'lang': all_l_res,
'vision': vis_logits
}
else:
logits = align_logits
if self.training:
return logits
else:
return F.softmax(logits, -1)
def _get_length(logit):
""" Greed decoder to obtain length from logit"""
out = (logit.argmax(-1) == 0)
abn = out.any(-1)
out_int = out.cast('int32')
out = (out_int.cumsum(-1) == 1) & out
out = out.cast('int32')
out = out.argmax(-1)
out = out + 1
len_seq = paddle.zeros_like(out) + logit.shape[1]
out = paddle.where(abn, out, len_seq)
return out
def _get_mask(length, max_length):
"""Generate a square mask for the sequence. The masked positions are filled with float('-inf').
Unmasked positions are filled with float(0.0).
"""
length = length.unsqueeze(-1)
B = paddle.shape(length)[0]
grid = paddle.arange(0, max_length).unsqueeze(0).tile([B, 1])
zero_mask = paddle.zeros([B, max_length], dtype='float32')
inf_mask = paddle.full([B, max_length], '-inf', dtype='float32')
diag_mask = paddle.diag(
paddle.full(
[max_length], '-inf', dtype=paddle.float32),
offset=0,
name=None)
mask = paddle.where(grid >= length, inf_mask, zero_mask)
mask = mask.unsqueeze(1) + diag_mask
return mask.unsqueeze(1)