forked from PaddlePaddle/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrec_visionlan_head.py
468 lines (414 loc) · 17.7 KB
/
rec_visionlan_head.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/wangyuxin87/VisionLAN
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn.initializer import Normal, XavierNormal
import numpy as np
class PositionalEncoding(nn.Layer):
def __init__(self, d_hid, n_position=200):
super(PositionalEncoding, self).__init__()
self.register_buffer(
'pos_table', self._get_sinusoid_encoding_table(n_position, d_hid))
def _get_sinusoid_encoding_table(self, n_position, d_hid):
''' Sinusoid position encoding table '''
def get_position_angle_vec(position):
return [
position / np.power(10000, 2 * (hid_j // 2) / d_hid)
for hid_j in range(d_hid)
]
sinusoid_table = np.array(
[get_position_angle_vec(pos_i) for pos_i in range(n_position)])
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
sinusoid_table = paddle.to_tensor(sinusoid_table, dtype='float32')
sinusoid_table = paddle.unsqueeze(sinusoid_table, axis=0)
return sinusoid_table
def forward(self, x):
return x + self.pos_table[:, :x.shape[1]].clone().detach()
class ScaledDotProductAttention(nn.Layer):
"Scaled Dot-Product Attention"
def __init__(self, temperature, attn_dropout=0.1):
super(ScaledDotProductAttention, self).__init__()
self.temperature = temperature
self.dropout = nn.Dropout(attn_dropout)
self.softmax = nn.Softmax(axis=2)
def forward(self, q, k, v, mask=None):
k = paddle.transpose(k, perm=[0, 2, 1])
attn = paddle.bmm(q, k)
attn = attn / self.temperature
if mask is not None:
attn = attn.masked_fill(mask, -1e9)
if mask.dim() == 3:
mask = paddle.unsqueeze(mask, axis=1)
elif mask.dim() == 2:
mask = paddle.unsqueeze(mask, axis=1)
mask = paddle.unsqueeze(mask, axis=1)
repeat_times = [
attn.shape[1] // mask.shape[1], attn.shape[2] // mask.shape[2]
]
mask = paddle.tile(mask, [1, repeat_times[0], repeat_times[1], 1])
attn[mask == 0] = -1e9
attn = self.softmax(attn)
attn = self.dropout(attn)
output = paddle.bmm(attn, v)
return output
class MultiHeadAttention(nn.Layer):
" Multi-Head Attention module"
def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1):
super(MultiHeadAttention, self).__init__()
self.n_head = n_head
self.d_k = d_k
self.d_v = d_v
self.w_qs = nn.Linear(
d_model,
n_head * d_k,
weight_attr=ParamAttr(initializer=Normal(
mean=0, std=np.sqrt(2.0 / (d_model + d_k)))))
self.w_ks = nn.Linear(
d_model,
n_head * d_k,
weight_attr=ParamAttr(initializer=Normal(
mean=0, std=np.sqrt(2.0 / (d_model + d_k)))))
self.w_vs = nn.Linear(
d_model,
n_head * d_v,
weight_attr=ParamAttr(initializer=Normal(
mean=0, std=np.sqrt(2.0 / (d_model + d_v)))))
self.attention = ScaledDotProductAttention(temperature=np.power(d_k,
0.5))
self.layer_norm = nn.LayerNorm(d_model)
self.fc = nn.Linear(
n_head * d_v,
d_model,
weight_attr=ParamAttr(initializer=XavierNormal()))
self.dropout = nn.Dropout(dropout)
def forward(self, q, k, v, mask=None):
d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
sz_b, len_q, _ = q.shape
sz_b, len_k, _ = k.shape
sz_b, len_v, _ = v.shape
residual = q
q = self.w_qs(q)
q = paddle.reshape(
q, shape=[-1, len_q, n_head, d_k]) # 4*21*512 ---- 4*21*8*64
k = self.w_ks(k)
k = paddle.reshape(k, shape=[-1, len_k, n_head, d_k])
v = self.w_vs(v)
v = paddle.reshape(v, shape=[-1, len_v, n_head, d_v])
q = paddle.transpose(q, perm=[2, 0, 1, 3])
q = paddle.reshape(q, shape=[-1, len_q, d_k]) # (n*b) x lq x dk
k = paddle.transpose(k, perm=[2, 0, 1, 3])
k = paddle.reshape(k, shape=[-1, len_k, d_k]) # (n*b) x lk x dk
v = paddle.transpose(v, perm=[2, 0, 1, 3])
v = paddle.reshape(v, shape=[-1, len_v, d_v]) # (n*b) x lv x dv
mask = paddle.tile(
mask,
[n_head, 1, 1]) if mask is not None else None # (n*b) x .. x ..
output = self.attention(q, k, v, mask=mask)
output = paddle.reshape(output, shape=[n_head, -1, len_q, d_v])
output = paddle.transpose(output, perm=[1, 2, 0, 3])
output = paddle.reshape(
output, shape=[-1, len_q, n_head * d_v]) # b x lq x (n*dv)
output = self.dropout(self.fc(output))
output = self.layer_norm(output + residual)
return output
class PositionwiseFeedForward(nn.Layer):
def __init__(self, d_in, d_hid, dropout=0.1):
super(PositionwiseFeedForward, self).__init__()
self.w_1 = nn.Conv1D(d_in, d_hid, 1) # position-wise
self.w_2 = nn.Conv1D(d_hid, d_in, 1) # position-wise
self.layer_norm = nn.LayerNorm(d_in)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
residual = x
x = paddle.transpose(x, perm=[0, 2, 1])
x = self.w_2(F.relu(self.w_1(x)))
x = paddle.transpose(x, perm=[0, 2, 1])
x = self.dropout(x)
x = self.layer_norm(x + residual)
return x
class EncoderLayer(nn.Layer):
''' Compose with two layers '''
def __init__(self, d_model, d_inner, n_head, d_k, d_v, dropout=0.1):
super(EncoderLayer, self).__init__()
self.slf_attn = MultiHeadAttention(
n_head, d_model, d_k, d_v, dropout=dropout)
self.pos_ffn = PositionwiseFeedForward(
d_model, d_inner, dropout=dropout)
def forward(self, enc_input, slf_attn_mask=None):
enc_output = self.slf_attn(
enc_input, enc_input, enc_input, mask=slf_attn_mask)
enc_output = self.pos_ffn(enc_output)
return enc_output
class Transformer_Encoder(nn.Layer):
def __init__(self,
n_layers=2,
n_head=8,
d_word_vec=512,
d_k=64,
d_v=64,
d_model=512,
d_inner=2048,
dropout=0.1,
n_position=256):
super(Transformer_Encoder, self).__init__()
self.position_enc = PositionalEncoding(
d_word_vec, n_position=n_position)
self.dropout = nn.Dropout(p=dropout)
self.layer_stack = nn.LayerList([
EncoderLayer(
d_model, d_inner, n_head, d_k, d_v, dropout=dropout)
for _ in range(n_layers)
])
self.layer_norm = nn.LayerNorm(d_model, epsilon=1e-6)
def forward(self, enc_output, src_mask, return_attns=False):
enc_output = self.dropout(
self.position_enc(enc_output)) # position embeding
for enc_layer in self.layer_stack:
enc_output = enc_layer(enc_output, slf_attn_mask=src_mask)
enc_output = self.layer_norm(enc_output)
return enc_output
class PP_layer(nn.Layer):
def __init__(self, n_dim=512, N_max_character=25, n_position=256):
super(PP_layer, self).__init__()
self.character_len = N_max_character
self.f0_embedding = nn.Embedding(N_max_character, n_dim)
self.w0 = nn.Linear(N_max_character, n_position)
self.wv = nn.Linear(n_dim, n_dim)
self.we = nn.Linear(n_dim, N_max_character)
self.active = nn.Tanh()
self.softmax = nn.Softmax(axis=2)
def forward(self, enc_output):
# enc_output: b,256,512
reading_order = paddle.arange(self.character_len, dtype='int64')
reading_order = reading_order.unsqueeze(0).expand(
[enc_output.shape[0], self.character_len]) # (S,) -> (B, S)
reading_order = self.f0_embedding(reading_order) # b,25,512
# calculate attention
reading_order = paddle.transpose(reading_order, perm=[0, 2, 1])
t = self.w0(reading_order) # b,512,256
t = self.active(
paddle.transpose(
t, perm=[0, 2, 1]) + self.wv(enc_output)) # b,256,512
t = self.we(t) # b,256,25
t = self.softmax(paddle.transpose(t, perm=[0, 2, 1])) # b,25,256
g_output = paddle.bmm(t, enc_output) # b,25,512
return g_output
class Prediction(nn.Layer):
def __init__(self,
n_dim=512,
n_position=256,
N_max_character=25,
n_class=37):
super(Prediction, self).__init__()
self.pp = PP_layer(
n_dim=n_dim, N_max_character=N_max_character, n_position=n_position)
self.pp_share = PP_layer(
n_dim=n_dim, N_max_character=N_max_character, n_position=n_position)
self.w_vrm = nn.Linear(n_dim, n_class) # output layer
self.w_share = nn.Linear(n_dim, n_class) # output layer
self.nclass = n_class
def forward(self, cnn_feature, f_res, f_sub, train_mode=False,
use_mlm=True):
if train_mode:
if not use_mlm:
g_output = self.pp(cnn_feature) # b,25,512
g_output = self.w_vrm(g_output)
f_res = 0
f_sub = 0
return g_output, f_res, f_sub
g_output = self.pp(cnn_feature) # b,25,512
f_res = self.pp_share(f_res)
f_sub = self.pp_share(f_sub)
g_output = self.w_vrm(g_output)
f_res = self.w_share(f_res)
f_sub = self.w_share(f_sub)
return g_output, f_res, f_sub
else:
g_output = self.pp(cnn_feature) # b,25,512
g_output = self.w_vrm(g_output)
return g_output
class MLM(nn.Layer):
"Architecture of MLM"
def __init__(self, n_dim=512, n_position=256, max_text_length=25):
super(MLM, self).__init__()
self.MLM_SequenceModeling_mask = Transformer_Encoder(
n_layers=2, n_position=n_position)
self.MLM_SequenceModeling_WCL = Transformer_Encoder(
n_layers=1, n_position=n_position)
self.pos_embedding = nn.Embedding(max_text_length, n_dim)
self.w0_linear = nn.Linear(1, n_position)
self.wv = nn.Linear(n_dim, n_dim)
self.active = nn.Tanh()
self.we = nn.Linear(n_dim, 1)
self.sigmoid = nn.Sigmoid()
def forward(self, x, label_pos):
# transformer unit for generating mask_c
feature_v_seq = self.MLM_SequenceModeling_mask(x, src_mask=None)
# position embedding layer
label_pos = paddle.to_tensor(label_pos, dtype='int64')
pos_emb = self.pos_embedding(label_pos)
pos_emb = self.w0_linear(paddle.unsqueeze(pos_emb, axis=2))
pos_emb = paddle.transpose(pos_emb, perm=[0, 2, 1])
# fusion position embedding with features V & generate mask_c
att_map_sub = self.active(pos_emb + self.wv(feature_v_seq))
att_map_sub = self.we(att_map_sub) # b,256,1
att_map_sub = paddle.transpose(att_map_sub, perm=[0, 2, 1])
att_map_sub = self.sigmoid(att_map_sub) # b,1,256
# WCL
## generate inputs for WCL
att_map_sub = paddle.transpose(att_map_sub, perm=[0, 2, 1])
f_res = x * (1 - att_map_sub) # second path with remaining string
f_sub = x * att_map_sub # first path with occluded character
## transformer units in WCL
f_res = self.MLM_SequenceModeling_WCL(f_res, src_mask=None)
f_sub = self.MLM_SequenceModeling_WCL(f_sub, src_mask=None)
return f_res, f_sub, att_map_sub
def trans_1d_2d(x):
b, w_h, c = x.shape # b, 256, 512
x = paddle.transpose(x, perm=[0, 2, 1])
x = paddle.reshape(x, [-1, c, 32, 8])
x = paddle.transpose(x, perm=[0, 1, 3, 2]) # [b, c, 8, 32]
return x
class MLM_VRM(nn.Layer):
"""
MLM+VRM, MLM is only used in training.
ratio controls the occluded number in a batch.
The pipeline of VisionLAN in testing is very concise with only a backbone + sequence modeling(transformer unit) + prediction layer(pp layer).
x: input image
label_pos: character index
training_step: LF or LA process
output
text_pre: prediction of VRM
test_rem: prediction of remaining string in MLM
text_mas: prediction of occluded character in MLM
mask_c_show: visualization of Mask_c
"""
def __init__(self,
n_layers=3,
n_position=256,
n_dim=512,
max_text_length=25,
nclass=37):
super(MLM_VRM, self).__init__()
self.MLM = MLM(n_dim=n_dim,
n_position=n_position,
max_text_length=max_text_length)
self.SequenceModeling = Transformer_Encoder(
n_layers=n_layers, n_position=n_position)
self.Prediction = Prediction(
n_dim=n_dim,
n_position=n_position,
N_max_character=max_text_length +
1, # N_max_character = 1 eos + 25 characters
n_class=nclass)
self.nclass = nclass
self.max_text_length = max_text_length
def forward(self, x, label_pos, training_step, train_mode=False):
b, c, h, w = x.shape
nT = self.max_text_length
x = paddle.transpose(x, perm=[0, 1, 3, 2])
x = paddle.reshape(x, [-1, c, h * w])
x = paddle.transpose(x, perm=[0, 2, 1])
if train_mode:
if training_step == 'LF_1':
f_res = 0
f_sub = 0
x = self.SequenceModeling(x, src_mask=None)
text_pre, test_rem, text_mas = self.Prediction(
x, f_res, f_sub, train_mode=True, use_mlm=False)
return text_pre, text_pre, text_pre, text_pre
elif training_step == 'LF_2':
# MLM
f_res, f_sub, mask_c = self.MLM(x, label_pos)
x = self.SequenceModeling(x, src_mask=None)
text_pre, test_rem, text_mas = self.Prediction(
x, f_res, f_sub, train_mode=True)
mask_c_show = trans_1d_2d(mask_c)
return text_pre, test_rem, text_mas, mask_c_show
elif training_step == 'LA':
# MLM
f_res, f_sub, mask_c = self.MLM(x, label_pos)
## use the mask_c (1 for occluded character and 0 for remaining characters) to occlude input
## ratio controls the occluded number in a batch
character_mask = paddle.zeros_like(mask_c)
ratio = b // 2
if ratio >= 1:
with paddle.no_grad():
character_mask[0:ratio, :, :] = mask_c[0:ratio, :, :]
else:
character_mask = mask_c
x = x * (1 - character_mask)
# VRM
## transformer unit for VRM
x = self.SequenceModeling(x, src_mask=None)
## prediction layer for MLM and VSR
text_pre, test_rem, text_mas = self.Prediction(
x, f_res, f_sub, train_mode=True)
mask_c_show = trans_1d_2d(mask_c)
return text_pre, test_rem, text_mas, mask_c_show
else:
raise NotImplementedError
else: # VRM is only used in the testing stage
f_res = 0
f_sub = 0
contextual_feature = self.SequenceModeling(x, src_mask=None)
text_pre = self.Prediction(
contextual_feature,
f_res,
f_sub,
train_mode=False,
use_mlm=False)
text_pre = paddle.transpose(
text_pre, perm=[1, 0, 2]) # (26, b, 37))
return text_pre, x
class VLHead(nn.Layer):
"""
Architecture of VisionLAN
"""
def __init__(self,
in_channels,
out_channels=36,
n_layers=3,
n_position=256,
n_dim=512,
max_text_length=25,
training_step='LA'):
super(VLHead, self).__init__()
self.MLM_VRM = MLM_VRM(
n_layers=n_layers,
n_position=n_position,
n_dim=n_dim,
max_text_length=max_text_length,
nclass=out_channels + 1)
self.training_step = training_step
def forward(self, feat, targets=None):
if self.training:
label_pos = targets[-2]
text_pre, test_rem, text_mas, mask_map = self.MLM_VRM(
feat, label_pos, self.training_step, train_mode=True)
return text_pre, test_rem, text_mas, mask_map
else:
text_pre, x = self.MLM_VRM(
feat, targets, self.training_step, train_mode=False)
return text_pre, x