forked from PaddlePaddle/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtable_att_head.py
248 lines (227 loc) · 10.1 KB
/
table_att_head.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle
import paddle.nn as nn
from paddle import ParamAttr
import paddle.nn.functional as F
import numpy as np
from .rec_att_head import AttentionGRUCell
def get_para_bias_attr(l2_decay, k):
if l2_decay > 0:
regularizer = paddle.regularizer.L2Decay(l2_decay)
stdv = 1.0 / math.sqrt(k * 1.0)
initializer = nn.initializer.Uniform(-stdv, stdv)
else:
regularizer = None
initializer = None
weight_attr = ParamAttr(regularizer=regularizer, initializer=initializer)
bias_attr = ParamAttr(regularizer=regularizer, initializer=initializer)
return [weight_attr, bias_attr]
class TableAttentionHead(nn.Layer):
def __init__(self,
in_channels,
hidden_size,
in_max_len=488,
max_text_length=800,
out_channels=30,
loc_reg_num=4,
**kwargs):
super(TableAttentionHead, self).__init__()
self.input_size = in_channels[-1]
self.hidden_size = hidden_size
self.out_channels = out_channels
self.max_text_length = max_text_length
self.structure_attention_cell = AttentionGRUCell(
self.input_size, hidden_size, self.out_channels, use_gru=False)
self.structure_generator = nn.Linear(hidden_size, self.out_channels)
self.in_max_len = in_max_len
if self.in_max_len == 640:
self.loc_fea_trans = nn.Linear(400, self.max_text_length + 1)
elif self.in_max_len == 800:
self.loc_fea_trans = nn.Linear(625, self.max_text_length + 1)
else:
self.loc_fea_trans = nn.Linear(256, self.max_text_length + 1)
self.loc_generator = nn.Linear(self.input_size + hidden_size,
loc_reg_num)
def _char_to_onehot(self, input_char, onehot_dim):
input_ont_hot = F.one_hot(input_char, onehot_dim)
return input_ont_hot
def forward(self, inputs, targets=None):
# if and else branch are both needed when you want to assign a variable
# if you modify the var in just one branch, then the modification will not work.
fea = inputs[-1]
last_shape = int(np.prod(fea.shape[2:])) # gry added
fea = paddle.reshape(fea, [fea.shape[0], fea.shape[1], last_shape])
fea = fea.transpose([0, 2, 1]) # (NTC)(batch, width, channels)
batch_size = fea.shape[0]
hidden = paddle.zeros((batch_size, self.hidden_size))
output_hiddens = paddle.zeros(
(batch_size, self.max_text_length + 1, self.hidden_size))
if self.training and targets is not None:
structure = targets[0]
for i in range(self.max_text_length + 1):
elem_onehots = self._char_to_onehot(
structure[:, i], onehot_dim=self.out_channels)
(outputs, hidden), alpha = self.structure_attention_cell(
hidden, fea, elem_onehots)
output_hiddens[:, i, :] = outputs
structure_probs = self.structure_generator(output_hiddens)
loc_fea = fea.transpose([0, 2, 1])
loc_fea = self.loc_fea_trans(loc_fea)
loc_fea = loc_fea.transpose([0, 2, 1])
loc_concat = paddle.concat([output_hiddens, loc_fea], axis=2)
loc_preds = self.loc_generator(loc_concat)
loc_preds = F.sigmoid(loc_preds)
else:
temp_elem = paddle.zeros(shape=[batch_size], dtype="int32")
structure_probs = None
loc_preds = None
elem_onehots = None
outputs = None
alpha = None
max_text_length = paddle.to_tensor(self.max_text_length)
for i in range(max_text_length + 1):
elem_onehots = self._char_to_onehot(
temp_elem, onehot_dim=self.out_channels)
(outputs, hidden), alpha = self.structure_attention_cell(
hidden, fea, elem_onehots)
output_hiddens[:, i, :] = outputs
structure_probs_step = self.structure_generator(outputs)
temp_elem = structure_probs_step.argmax(axis=1, dtype="int32")
structure_probs = self.structure_generator(output_hiddens)
structure_probs = F.softmax(structure_probs)
loc_fea = fea.transpose([0, 2, 1])
loc_fea = self.loc_fea_trans(loc_fea)
loc_fea = loc_fea.transpose([0, 2, 1])
loc_concat = paddle.concat([output_hiddens, loc_fea], axis=2)
loc_preds = self.loc_generator(loc_concat)
loc_preds = F.sigmoid(loc_preds)
return {'structure_probs': structure_probs, 'loc_preds': loc_preds}
class SLAHead(nn.Layer):
def __init__(self,
in_channels,
hidden_size,
out_channels=30,
max_text_length=500,
loc_reg_num=4,
fc_decay=0.0,
**kwargs):
"""
@param in_channels: input shape
@param hidden_size: hidden_size for RNN and Embedding
@param out_channels: num_classes to rec
@param max_text_length: max text pred
"""
super().__init__()
in_channels = in_channels[-1]
self.hidden_size = hidden_size
self.max_text_length = max_text_length
self.emb = self._char_to_onehot
self.num_embeddings = out_channels
self.loc_reg_num = loc_reg_num
# structure
self.structure_attention_cell = AttentionGRUCell(
in_channels, hidden_size, self.num_embeddings)
weight_attr, bias_attr = get_para_bias_attr(
l2_decay=fc_decay, k=hidden_size)
weight_attr1_1, bias_attr1_1 = get_para_bias_attr(
l2_decay=fc_decay, k=hidden_size)
weight_attr1_2, bias_attr1_2 = get_para_bias_attr(
l2_decay=fc_decay, k=hidden_size)
self.structure_generator = nn.Sequential(
nn.Linear(
self.hidden_size,
self.hidden_size,
weight_attr=weight_attr1_2,
bias_attr=bias_attr1_2),
nn.Linear(
hidden_size,
out_channels,
weight_attr=weight_attr,
bias_attr=bias_attr))
# loc
weight_attr1, bias_attr1 = get_para_bias_attr(
l2_decay=fc_decay, k=self.hidden_size)
weight_attr2, bias_attr2 = get_para_bias_attr(
l2_decay=fc_decay, k=self.hidden_size)
self.loc_generator = nn.Sequential(
nn.Linear(
self.hidden_size,
self.hidden_size,
weight_attr=weight_attr1,
bias_attr=bias_attr1),
nn.Linear(
self.hidden_size,
loc_reg_num,
weight_attr=weight_attr2,
bias_attr=bias_attr2),
nn.Sigmoid())
def forward(self, inputs, targets=None):
fea = inputs[-1]
batch_size = fea.shape[0]
# reshape
fea = paddle.reshape(fea, [fea.shape[0], fea.shape[1], -1])
fea = fea.transpose([0, 2, 1]) # (NTC)(batch, width, channels)
hidden = paddle.zeros((batch_size, self.hidden_size))
structure_preds = paddle.zeros(
(batch_size, self.max_text_length + 1, self.num_embeddings))
loc_preds = paddle.zeros(
(batch_size, self.max_text_length + 1, self.loc_reg_num))
structure_preds.stop_gradient = True
loc_preds.stop_gradient = True
if self.training and targets is not None:
structure = targets[0]
for i in range(self.max_text_length + 1):
hidden, structure_step, loc_step = self._decode(structure[:, i],
fea, hidden)
structure_preds[:, i, :] = structure_step
loc_preds[:, i, :] = loc_step
else:
pre_chars = paddle.zeros(shape=[batch_size], dtype="int32")
max_text_length = paddle.to_tensor(self.max_text_length)
# for export
loc_step, structure_step = None, None
for i in range(max_text_length + 1):
hidden, structure_step, loc_step = self._decode(pre_chars, fea,
hidden)
pre_chars = structure_step.argmax(axis=1, dtype="int32")
structure_preds[:, i, :] = structure_step
loc_preds[:, i, :] = loc_step
if not self.training:
structure_preds = F.softmax(structure_preds)
return {'structure_probs': structure_preds, 'loc_preds': loc_preds}
def _decode(self, pre_chars, features, hidden):
"""
Predict table label and coordinates for each step
@param pre_chars: Table label in previous step
@param features:
@param hidden: hidden status in previous step
@return:
"""
emb_feature = self.emb(pre_chars)
# output shape is b * self.hidden_size
(output, hidden), alpha = self.structure_attention_cell(
hidden, features, emb_feature)
# structure
structure_step = self.structure_generator(output)
# loc
loc_step = self.loc_generator(output)
return hidden, structure_step, loc_step
def _char_to_onehot(self, input_char):
input_ont_hot = F.one_hot(input_char, self.num_embeddings)
return input_ont_hot